From 0d6dc884708c5aa826e4943b8a230fbdfc6f017c Mon Sep 17 00:00:00 2001 From: Sungchan Yi Date: Tue, 12 Nov 2024 22:01:19 +0900 Subject: [PATCH] [PUBLISHER] upload files #164 * PUSH NOTE : 1. OTP, Stream Ciphers and PRGs.md * DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-07-otp-stream-cipher-prgs/2023-09-07-otp-stream-cipher-prgs.md --- .../2023-09-07-otp-stream-cipher-prgs.md | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) rename _posts/lecture-notes/modern-cryptography/{2023-09-07-otp-stream-cipher-prgs => }/2023-09-07-otp-stream-cipher-prgs.md (98%) diff --git a/_posts/lecture-notes/modern-cryptography/2023-09-07-otp-stream-cipher-prgs/2023-09-07-otp-stream-cipher-prgs.md b/_posts/lecture-notes/modern-cryptography/2023-09-07-otp-stream-cipher-prgs.md similarity index 98% rename from _posts/lecture-notes/modern-cryptography/2023-09-07-otp-stream-cipher-prgs/2023-09-07-otp-stream-cipher-prgs.md rename to _posts/lecture-notes/modern-cryptography/2023-09-07-otp-stream-cipher-prgs.md index 80e7326..4688cbf 100644 --- a/_posts/lecture-notes/modern-cryptography/2023-09-07-otp-stream-cipher-prgs/2023-09-07-otp-stream-cipher-prgs.md +++ b/_posts/lecture-notes/modern-cryptography/2023-09-07-otp-stream-cipher-prgs.md @@ -5,6 +5,7 @@ math: true categories: - Lecture Notes - Modern Cryptography +path: _posts/lecture-notes/modern-cryptography tags: - lecture-note - cryptography @@ -12,7 +13,6 @@ tags: title: 1. One-Time Pad, Stream Ciphers and PRGs date: 2023-09-07 github_title: 2023-09-07-otp-stream-cipher-prgs -path: _posts/lecture-notes/modern-cryptography/2023-09-07-otp-stream-cipher-prgs image: path: assets/img/posts/lecture-notes/modern-cryptography/mc-01-ss.png attachment: @@ -293,7 +293,7 @@ We can deduce that if a PRG is predictable, then it is insecure. *Proof*. Let $\mathcal{A}$ be an efficient adversary (next bit predictor) that predicts $G$. Suppose that $i$ is the index chosen by $\mathcal{A}$. With $\mathcal{A}$, we construct a statistical test $\mathcal{B}$ such that $\mathrm{Adv}_\mathrm{PRG}[\mathcal{B}, G]$ is non-negligible. -![mc-01-prg-game.png](../../../../assets/img/posts/lecture-notes/modern-cryptography/mc-01-prg-game.png) +![mc-01-prg-game.png](../../../assets/img/posts/lecture-notes/modern-cryptography/mc-01-prg-game.png) 1. The challenger PRG will send a bit string $x$ to $\mathcal{B}$. - In experiment $0$, PRG gives pseudorandom string $G(k)$. @@ -319,7 +319,7 @@ The theorem implies that if next bit predictors cannot distinguish $G$ from true To motivate the definition of semantic security, we consider a **security game framework** (attack game) between a **challenger** (ex. the creator of some cryptographic scheme) and an **adversary** $\mathcal{A}$ (ex. attacker of the scheme). -![mc-01-ss.png](../../../../assets/img/posts/lecture-notes/modern-cryptography/mc-01-ss.png) +![mc-01-ss.png](../../../assets/img/posts/lecture-notes/modern-cryptography/mc-01-ss.png) > **Definition.** Let $\mathcal{E} = (G, E, D)$ be a cipher defined over $(\mathcal{K}, \mathcal{M}, \mathcal{C})$. For a given adversary $\mathcal{A}$, we define two experiments $0$ and $1$. For $b \in \lbrace 0, 1 \rbrace$, define experiment $b$ as follows: >