[PUBLISHER] upload files #121

This commit is contained in:
2023-10-27 21:11:58 +09:00
committed by GitHub
parent 871ca66457
commit 0f1120b2f6

View File

@@ -166,7 +166,7 @@ The attacker will see $g^k$. By the hardness of DLP, the attacker is unable to r
#### Ephemeral Key Should Be Distinct
If the same $k$ is used twice, the encryption is not secure. Suppose we encrypt two different messages $m_1, m_2 \in \mathbb{Z}_p^*$. The attacker will see $(g^k, m_1y^k)$ and $(g^k, m_2 y^k)$. Then since we are in a multiplicative group $\mathbb{Z}_p^*$, inverses exist. So
If the same $k$ is used twice, the encryption is not secure. Suppose we encrypt two different messages $m_1, m_2 \in \mathbb{Z} _ p^{ * }$. The attacker will see $(g^k, m_1y^k)$ and $(g^k, m_2 y^k)$. Then since we are in a multiplicative group $\mathbb{Z} _ p^{ * }$, inverses exist. So
$$
m_1y^k \cdot (m_2 y^k)^{-1} \equiv m_1m_2^{-1} \equiv 1 \pmod p