mirror of
https://github.com/calofmijuck/blog.git
synced 2025-12-06 22:53:51 +00:00
feat: breaking change (unstable) (#198)
* [PUBLISHER] upload files #175 * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH NOTE : 03. Symmetric Key Cryptography (2).md * DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md * DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-19-symmetric-key-encryption.md * [PUBLISHER] upload files #177 * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH NOTE : 03. Symmetric Key Cryptography (2).md * DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md * DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-19-symmetric-key-encryptio.md * [PUBLISHER] upload files #178 * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH NOTE : 03. Symmetric Key Cryptography (2).md * DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md * [PUBLISHER] upload files #179 * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH NOTE : 03. Symmetric Key Cryptography (2).md * DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md * [PUBLISHER] upload files #180 * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH NOTE : 03. Symmetric Key Cryptography (2).md * DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md * [PUBLISHER] upload files #181 * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH NOTE : 03. Symmetric Key Cryptography (2).md * DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md * [PUBLISHER] upload files #182 * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH NOTE : 03. Symmetric Key Cryptography (2).md * [PUBLISHER] upload files #183 * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH NOTE : 03. Symmetric Key Cryptography (2).md * DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md * [PUBLISHER] upload files #184 * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH NOTE : 03. Symmetric Key Cryptography (2).md * DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md * [PUBLISHER] upload files #185 * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH NOTE : 03. Symmetric Key Cryptography (2).md * DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md * [PUBLISHER] upload files #186 * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH NOTE : 03. Symmetric Key Cryptography (2).md * [PUBLISHER] upload files #187 * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH NOTE : 14. Secure Multiparty Computation.md * DELETE FILE : _posts/Lecture Notes/Modern Cryptography/2023-09-19-symmetric-key-encryption.md * DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md * [PUBLISHER] upload files #188 * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH NOTE : 14. Secure Multiparty Computation.md * DELETE FILE : _posts/Lecture Notes/Modern Cryptography/2023-09-19-symmetric-key-encryption.md * chore: remove files * [PUBLISHER] upload files #197 * PUSH NOTE : 수학 공부에 대한 고찰.md * PUSH NOTE : 09. Lp Functions.md * PUSH ATTACHMENT : mt-09.png * PUSH NOTE : 08. Comparison with the Riemann Integral.md * PUSH ATTACHMENT : mt-08.png * PUSH NOTE : 04. Measurable Functions.md * PUSH ATTACHMENT : mt-04.png * PUSH NOTE : 06. Convergence Theorems.md * PUSH ATTACHMENT : mt-06.png * PUSH NOTE : 07. Dominated Convergence Theorem.md * PUSH ATTACHMENT : mt-07.png * PUSH NOTE : 05. Lebesgue Integration.md * PUSH ATTACHMENT : mt-05.png * PUSH NOTE : 03. Measure Spaces.md * PUSH ATTACHMENT : mt-03.png * PUSH NOTE : 02. Construction of Measure.md * PUSH ATTACHMENT : mt-02.png * PUSH NOTE : 01. Algebra of Sets and Set Functions.md * PUSH ATTACHMENT : mt-01.png * PUSH NOTE : Rules of Inference with Coq.md * PUSH NOTE : 블로그 이주 이야기.md * PUSH NOTE : Secure IAM on AWS with Multi-Account Strategy.md * PUSH ATTACHMENT : separation-by-product.png * PUSH NOTE : You and Your Research, Richard Hamming.md * PUSH NOTE : 10. Digital Signatures.md * PUSH ATTACHMENT : mc-10-dsig-security.png * PUSH ATTACHMENT : mc-10-schnorr-identification.png * PUSH NOTE : 9. Public Key Encryption.md * PUSH ATTACHMENT : mc-09-ss-pke.png * PUSH NOTE : 8. Number Theory.md * PUSH NOTE : 7. Key Exchange.md * PUSH ATTACHMENT : mc-07-dhke.png * PUSH ATTACHMENT : mc-07-dhke-mitm.png * PUSH ATTACHMENT : mc-07-merkle-puzzles.png * PUSH NOTE : 6. Hash Functions.md * PUSH ATTACHMENT : mc-06-merkle-damgard.png * PUSH ATTACHMENT : mc-06-davies-meyer.png * PUSH ATTACHMENT : mc-06-hmac.png * PUSH NOTE : 5. CCA-Security and Authenticated Encryption.md * PUSH ATTACHMENT : mc-05-ci.png * PUSH ATTACHMENT : mc-05-etm-mte.png * PUSH NOTE : 1. OTP, Stream Ciphers and PRGs.md * PUSH ATTACHMENT : mc-01-prg-game.png * PUSH ATTACHMENT : mc-01-ss.png * PUSH NOTE : 4. Message Authentication Codes.md * PUSH ATTACHMENT : mc-04-mac.png * PUSH ATTACHMENT : mc-04-mac-security.png * PUSH ATTACHMENT : mc-04-cbc-mac.png * PUSH ATTACHMENT : mc-04-ecbc-mac.png * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH ATTACHMENT : is-03-ecb-encryption.png * PUSH ATTACHMENT : is-03-cbc-encryption.png * PUSH ATTACHMENT : is-03-ctr-encryption.png * PUSH NOTE : 2. PRFs, PRPs and Block Ciphers.md * PUSH ATTACHMENT : mc-02-block-cipher.png * PUSH ATTACHMENT : mc-02-feistel-network.png * PUSH ATTACHMENT : mc-02-des-round.png * PUSH ATTACHMENT : mc-02-DES.png * PUSH ATTACHMENT : mc-02-aes-128.png * PUSH ATTACHMENT : mc-02-2des-mitm.png * PUSH NOTE : 18. Bootstrapping & CKKS.md * PUSH NOTE : 17. BGV Scheme.md * PUSH NOTE : 16. The GMW Protocol.md * PUSH ATTACHMENT : mc-16-beaver-triple.png * PUSH NOTE : 15. Garbled Circuits.md * PUSH NOTE : 14. Secure Multiparty Computation.md * PUSH NOTE : 13. Sigma Protocols.md * PUSH ATTACHMENT : mc-13-sigma-protocol.png * PUSH ATTACHMENT : mc-13-okamoto.png * PUSH ATTACHMENT : mc-13-chaum-pedersen.png * PUSH ATTACHMENT : mc-13-gq-protocol.png * PUSH NOTE : 12. Zero-Knowledge Proofs (Introduction).md * PUSH ATTACHMENT : mc-12-id-protocol.png * PUSH NOTE : 11. Advanced Topics.md * PUSH NOTE : 0. Introduction.md * PUSH NOTE : 02. Symmetric Key Cryptography (1).md * PUSH NOTE : 09. Transport Layer Security.md * PUSH ATTACHMENT : is-09-tls-handshake.png * PUSH NOTE : 08. Public Key Infrastructure.md * PUSH ATTACHMENT : is-08-certificate-validation.png * PUSH NOTE : 07. Public Key Cryptography.md * PUSH NOTE : 06. RSA and ElGamal Encryption.md * PUSH NOTE : 05. Modular Arithmetic (2).md * PUSH NOTE : 03. Symmetric Key Cryptography (2).md * PUSH ATTACHMENT : is-03-feistel-function.png * PUSH ATTACHMENT : is-03-cfb-encryption.png * PUSH ATTACHMENT : is-03-ofb-encryption.png * PUSH NOTE : 04. Modular Arithmetic (1).md * PUSH NOTE : 01. Security Introduction.md * PUSH ATTACHMENT : is-01-cryptosystem.png * PUSH NOTE : Search Time in Hash Tables.md * PUSH NOTE : 랜덤 PS일지 (1).md * chore: rearrange articles * feat: fix paths * feat: fix all broken links * feat: title font to palatino
This commit is contained in:
@@ -107,7 +107,7 @@ allows us to reduce the size of the numbers before exponentiation.
|
||||
|
||||
## Modular Arithmetic
|
||||
|
||||
For modulus $n$, **modular arithmetic** is operation on $\mathbb{Z}_n$.
|
||||
For modulus $n$, **modular arithmetic** is operation on $\mathbb{Z} _ n$.
|
||||
|
||||
### Residue Classes
|
||||
|
||||
@@ -136,10 +136,10 @@ Thus, $R$ is an **equivalence relation** and each residue class $[k]$ is an **eq
|
||||
We write the set of residue classes modulo $n$ as
|
||||
|
||||
$$
|
||||
\mathbb{Z}_n = \left\lbrace \overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1} \right\rbrace.
|
||||
\mathbb{Z} _ n = \left\lbrace \overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1} \right\rbrace.
|
||||
$$
|
||||
|
||||
Note that $\mathbb{Z}_n$ is closed under addition and multiplication.
|
||||
Note that $\mathbb{Z} _ n$ is closed under addition and multiplication.
|
||||
|
||||
### Identity
|
||||
|
||||
@@ -149,7 +149,7 @@ Note that $\mathbb{Z}_n$ is closed under addition and multiplication.
|
||||
> \forall a \in S,\, a * e = e * a = a.
|
||||
> $$
|
||||
|
||||
In $\mathbb{Z}_n$, the additive identity is $0$, the multiplicative identity is $1$.
|
||||
In $\mathbb{Z} _ n$, the additive identity is $0$, the multiplicative identity is $1$.
|
||||
|
||||
### Inverse
|
||||
|
||||
@@ -169,7 +169,7 @@ $$
|
||||
|
||||
The inverse exists if and only if $\gcd(a, n) = 1$.
|
||||
|
||||
> **Lemma**. For $n \geq 2$ and $a \in \mathbb{Z}$, its inverse $a^{-1} \in \mathbb{Z}_n$ exists if and only if $\gcd(a, n) = 1$.
|
||||
> **Lemma**. For $n \geq 2$ and $a \in \mathbb{Z}$, its inverse $a^{-1} \in \mathbb{Z} _ n$ exists if and only if $\gcd(a, n) = 1$.
|
||||
|
||||
*Proof*. We use the extended Euclidean algorithm. There exists $u, v \in \mathbb{Z}$ such that
|
||||
|
||||
@@ -223,7 +223,7 @@ Basically, we use the Euclidean algorithm and solve for the remainder (which is
|
||||
|
||||
#### Calculating Modular Multiplicative Inverse
|
||||
|
||||
We can use the extended Euclidean algorithm to find modular inverses. Suppose we want to calculate $a^{-1}$ in $\mathbb{Z}_n$. We assume that the inverse exist, so $\gcd(a, n) = 1$.
|
||||
We can use the extended Euclidean algorithm to find modular inverses. Suppose we want to calculate $a^{-1}$ in $\mathbb{Z} _ n$. We assume that the inverse exist, so $\gcd(a, n) = 1$.
|
||||
|
||||
Therefore, we use the extended Euclidean algorithm and find $x, y \in \mathbb{Z}$ such that
|
||||
|
||||
@@ -231,7 +231,7 @@ $$
|
||||
ax + ny = 1.
|
||||
$$
|
||||
|
||||
Then $ax \equiv 1 - ny \equiv 1 \pmod n$, thus $x$ is the inverse of $a$ in $\mathbb{Z}_n$.
|
||||
Then $ax \equiv 1 - ny \equiv 1 \pmod n$, thus $x$ is the inverse of $a$ in $\mathbb{Z} _ n$.
|
||||
|
||||
[^1]: Note that in C standards, `(a / b) * b + (a % b) == a`.
|
||||
[^2]: $a$ and $b$ are in the same coset of $\mathbb{Z}/n\mathbb{Z}$.
|
||||
|
||||
Reference in New Issue
Block a user