feat: breaking change (unstable) (#198)

* [PUBLISHER] upload files #175

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-19-symmetric-key-encryption.md

* [PUBLISHER] upload files #177

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-19-symmetric-key-encryptio.md

* [PUBLISHER] upload files #178

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md

* [PUBLISHER] upload files #179

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md

* [PUBLISHER] upload files #180

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md

* [PUBLISHER] upload files #181

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md

* [PUBLISHER] upload files #182

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* [PUBLISHER] upload files #183

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md

* [PUBLISHER] upload files #184

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md

* [PUBLISHER] upload files #185

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md

* [PUBLISHER] upload files #186

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* [PUBLISHER] upload files #187

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 14. Secure Multiparty Computation.md

* DELETE FILE : _posts/Lecture Notes/Modern Cryptography/2023-09-19-symmetric-key-encryption.md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md

* [PUBLISHER] upload files #188

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 14. Secure Multiparty Computation.md

* DELETE FILE : _posts/Lecture Notes/Modern Cryptography/2023-09-19-symmetric-key-encryption.md

* chore: remove files

* [PUBLISHER] upload files #197

* PUSH NOTE : 수학 공부에 대한 고찰.md

* PUSH NOTE : 09. Lp Functions.md

* PUSH ATTACHMENT : mt-09.png

* PUSH NOTE : 08. Comparison with the Riemann Integral.md

* PUSH ATTACHMENT : mt-08.png

* PUSH NOTE : 04. Measurable Functions.md

* PUSH ATTACHMENT : mt-04.png

* PUSH NOTE : 06. Convergence Theorems.md

* PUSH ATTACHMENT : mt-06.png

* PUSH NOTE : 07. Dominated Convergence Theorem.md

* PUSH ATTACHMENT : mt-07.png

* PUSH NOTE : 05. Lebesgue Integration.md

* PUSH ATTACHMENT : mt-05.png

* PUSH NOTE : 03. Measure Spaces.md

* PUSH ATTACHMENT : mt-03.png

* PUSH NOTE : 02. Construction of Measure.md

* PUSH ATTACHMENT : mt-02.png

* PUSH NOTE : 01. Algebra of Sets and Set Functions.md

* PUSH ATTACHMENT : mt-01.png

* PUSH NOTE : Rules of Inference with Coq.md

* PUSH NOTE : 블로그 이주 이야기.md

* PUSH NOTE : Secure IAM on AWS with Multi-Account Strategy.md

* PUSH ATTACHMENT : separation-by-product.png

* PUSH NOTE : You and Your Research, Richard Hamming.md

* PUSH NOTE : 10. Digital Signatures.md

* PUSH ATTACHMENT : mc-10-dsig-security.png

* PUSH ATTACHMENT : mc-10-schnorr-identification.png

* PUSH NOTE : 9. Public Key Encryption.md

* PUSH ATTACHMENT : mc-09-ss-pke.png

* PUSH NOTE : 8. Number Theory.md

* PUSH NOTE : 7. Key Exchange.md

* PUSH ATTACHMENT : mc-07-dhke.png

* PUSH ATTACHMENT : mc-07-dhke-mitm.png

* PUSH ATTACHMENT : mc-07-merkle-puzzles.png

* PUSH NOTE : 6. Hash Functions.md

* PUSH ATTACHMENT : mc-06-merkle-damgard.png

* PUSH ATTACHMENT : mc-06-davies-meyer.png

* PUSH ATTACHMENT : mc-06-hmac.png

* PUSH NOTE : 5. CCA-Security and Authenticated Encryption.md

* PUSH ATTACHMENT : mc-05-ci.png

* PUSH ATTACHMENT : mc-05-etm-mte.png

* PUSH NOTE : 1. OTP, Stream Ciphers and PRGs.md

* PUSH ATTACHMENT : mc-01-prg-game.png

* PUSH ATTACHMENT : mc-01-ss.png

* PUSH NOTE : 4. Message Authentication Codes.md

* PUSH ATTACHMENT : mc-04-mac.png

* PUSH ATTACHMENT : mc-04-mac-security.png

* PUSH ATTACHMENT : mc-04-cbc-mac.png

* PUSH ATTACHMENT : mc-04-ecbc-mac.png

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH ATTACHMENT : is-03-ecb-encryption.png

* PUSH ATTACHMENT : is-03-cbc-encryption.png

* PUSH ATTACHMENT : is-03-ctr-encryption.png

* PUSH NOTE : 2. PRFs, PRPs and Block Ciphers.md

* PUSH ATTACHMENT : mc-02-block-cipher.png

* PUSH ATTACHMENT : mc-02-feistel-network.png

* PUSH ATTACHMENT : mc-02-des-round.png

* PUSH ATTACHMENT : mc-02-DES.png

* PUSH ATTACHMENT : mc-02-aes-128.png

* PUSH ATTACHMENT : mc-02-2des-mitm.png

* PUSH NOTE : 18. Bootstrapping & CKKS.md

* PUSH NOTE : 17. BGV Scheme.md

* PUSH NOTE : 16. The GMW Protocol.md

* PUSH ATTACHMENT : mc-16-beaver-triple.png

* PUSH NOTE : 15. Garbled Circuits.md

* PUSH NOTE : 14. Secure Multiparty Computation.md

* PUSH NOTE : 13. Sigma Protocols.md

* PUSH ATTACHMENT : mc-13-sigma-protocol.png

* PUSH ATTACHMENT : mc-13-okamoto.png

* PUSH ATTACHMENT : mc-13-chaum-pedersen.png

* PUSH ATTACHMENT : mc-13-gq-protocol.png

* PUSH NOTE : 12. Zero-Knowledge Proofs (Introduction).md

* PUSH ATTACHMENT : mc-12-id-protocol.png

* PUSH NOTE : 11. Advanced Topics.md

* PUSH NOTE : 0. Introduction.md

* PUSH NOTE : 02. Symmetric Key Cryptography (1).md

* PUSH NOTE : 09. Transport Layer Security.md

* PUSH ATTACHMENT : is-09-tls-handshake.png

* PUSH NOTE : 08. Public Key Infrastructure.md

* PUSH ATTACHMENT : is-08-certificate-validation.png

* PUSH NOTE : 07. Public Key Cryptography.md

* PUSH NOTE : 06. RSA and ElGamal Encryption.md

* PUSH NOTE : 05. Modular Arithmetic (2).md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* PUSH ATTACHMENT : is-03-feistel-function.png

* PUSH ATTACHMENT : is-03-cfb-encryption.png

* PUSH ATTACHMENT : is-03-ofb-encryption.png

* PUSH NOTE : 04. Modular Arithmetic (1).md

* PUSH NOTE : 01. Security Introduction.md

* PUSH ATTACHMENT : is-01-cryptosystem.png

* PUSH NOTE : Search Time in Hash Tables.md

* PUSH NOTE : 랜덤 PS일지 (1).md

* chore: rearrange articles

* feat: fix paths

* feat: fix all broken links

* feat: title font to palatino
This commit is contained in:
2024-11-13 14:28:45 +09:00
committed by GitHub
parent c9f7af5f3d
commit 23aeb29ad8
78 changed files with 2105 additions and 2030 deletions

View File

@@ -51,7 +51,7 @@ This is an explanation of *textbook* RSA encryption scheme.
### RSA Encryption and Decryption
Suppose we want to encrypt a message $m \in \mathbb{Z}_N$.
Suppose we want to encrypt a message $m \in \mathbb{Z} _ N$.
- **Encryption**
- Using the public key $(N, e)$, compute the ciphertext $c = m^e \bmod N$.
@@ -106,13 +106,13 @@ $e, d$ are still chosen to satisfy $ed \equiv 1 \pmod {\phi(N)}$. Suppose we wan
We will also use the Chinese remainder theorem here.
Since $\gcd(m, N) \neq 1$ and $N = pq$, we have $p \mid m$. So if we compute in $\mathbb{Z}_p$, we will get $0$,
Since $\gcd(m, N) \neq 1$ and $N = pq$, we have $p \mid m$. So if we compute in $\mathbb{Z} _ p$, we will get $0$,
$$
c^d \equiv m^{ed} \equiv 0^{ed} \equiv 0 \pmod p.
$$
We also do the computation in $\mathbb{Z}_q$ and get
We also do the computation in $\mathbb{Z} _ q$ and get
$$
c^d \equiv m^{ed} \equiv m^{1 + k\phi(N)} \equiv m\cdot (m^{q-1})^{k(p-1)} \equiv m \cdot 1^{k(p-1)} \equiv m \pmod q.
@@ -122,15 +122,15 @@ Here, we used the fact that $m^{q-1} \equiv 1 \pmod q$. This holds because if $p
Therefore, from $c^d \equiv 0 \pmod p$ and $c^d \equiv (m \bmod q) \pmod q$, we can recover a unique solution $c^d \equiv m \pmod N$.
Now we must argue that the recovered solution is actually equal to the original $m$. But what we did above was showing that $m^{ed}$ and $m$ in $\mathbb{Z}_N$ are mapped to the same element $(0, m \bmod q)$ in $\mathbb{Z}_p \times \mathbb{Z}_q$. Since the Chinese remainder theorem tells us that this mapping is an isomorphism, $m^{ed}$ and $m$ must have been the same elements of $\mathbb{Z}_N$ in the first place.
Now we must argue that the recovered solution is actually equal to the original $m$. But what we did above was showing that $m^{ed}$ and $m$ in $\mathbb{Z} _ N$ are mapped to the same element $(0, m \bmod q)$ in $\mathbb{Z} _ p \times \mathbb{Z} _ q$. Since the Chinese remainder theorem tells us that this mapping is an isomorphism, $m^{ed}$ and $m$ must have been the same elements of $\mathbb{Z} _ N$ in the first place.
Notice that we did not require $m$ to be relatively prime to $N$. Thus the RSA encryption scheme is correct for any $m \in \mathbb{Z}_N$.
Notice that we did not require $m$ to be relatively prime to $N$. Thus the RSA encryption scheme is correct for any $m \in \mathbb{Z} _ N$.
## Correctness of RSA with Fermat's Little Theorem
Actually, the above argument can be proven only with Fermat's little theorem. In the above proof, the Chinese remainder theorem was used to transform the operation, but for $N = pq$, the situation is simple enough that this theorem is not necessarily required.
Let $M = m^{ed} - m$. We have shown above only using Fermat's little theorem that $p \mid M$ and $q \mid M$, for any choice of $m \in \mathbb{Z}_N$. Then since $N = pq = \mathrm{lcm}(p, q)$, we have $N \mid M$, so $m^{ed} \equiv m \pmod N$. Hence the RSA scheme is correct.
Let $M = m^{ed} - m$. We have shown above only using Fermat's little theorem that $p \mid M$ and $q \mid M$, for any choice of $m \in \mathbb{Z} _ N$. Then since $N = pq = \mathrm{lcm}(p, q)$, we have $N \mid M$, so $m^{ed} \equiv m \pmod N$. Hence the RSA scheme is correct.
So we don't actually need Euler's generalization for proving the correctness of RSA...?! In fact, the proof given in the original paper of RSA used Fermat's little theorem.
@@ -138,42 +138,42 @@ So we don't actually need Euler's generalization for proving the correctness of
This is an inverse problem of exponentiation. The inverse of exponentials is logarithms, so we consider the **discrete logarithm of a number modulo $p$**.
Given $y \equiv g^x \pmod p$ for some prime $p$, we want to find $x = \log_g y$. We set $g$ to be a generator of the group $\mathbb{Z}_p$ or $\mathbb{Z}_p^\ast$, since if $g$ is the generator, a solution always exists.
Given $y \equiv g^x \pmod p$ for some prime $p$, we want to find $x = \log _ g y$. We set $g$ to be a generator of the group $\mathbb{Z} _ p$ or $\mathbb{Z} _ p^\ast$, since if $g$ is the generator, a solution always exists.
Read more in [discrete logarithm problem (Modern Cryptography)](../modern-cryptography/2023-10-03-key-exchange.md#discrete-logarithm-problem-(dl)).
Read more in [discrete logarithm problem (Modern Cryptography)](../../modern-cryptography/2023-10-03-key-exchange/#discrete-logarithm-problem-(dl)).
## ElGamal Encryption
This is an encryption scheme built upon the hardness of the DLP.
> 1. Let $p$ be a large prime.
> 2. Select a generator $g \in \mathbb{Z}_p^\ast$.
> 3. Choose a private key $x \in \mathbb{Z}_p^\ast$.
> 2. Select a generator $g \in \mathbb{Z} _ p^\ast$.
> 3. Choose a private key $x \in \mathbb{Z} _ p^\ast$.
> 4. Compute the public key $y = g^x \pmod p$.
> - $p, g, y$ will be publicly known.
> - $x$ is kept secret.
### ElGamal Encryption and Decryption
Suppose we encrypt a message $m \in \mathbb{Z}_p^\ast$.
Suppose we encrypt a message $m \in \mathbb{Z} _ p^\ast$.
> 1. The sender chooses a random $k \in \mathbb{Z}_p^\ast$, called *ephemeral key*.
> 2. Compute $c_1 = g^k \pmod p$ and $c_2 = my^k \pmod p$.
> 3. $c_1, c_2$ are sent to the receiver.
> 4. The receiver calculates $c_1^x \equiv g^{xk} \equiv y^k \pmod p$, and find the inverse $y^{-k} \in \mathbb{Z}_p^\ast$.
> 5. Then $c_2y^{-k} \equiv m \pmod p$, recovering the message.
> 1. The sender chooses a random $k \in \mathbb{Z} _ p^\ast$, called *ephemeral key*.
> 2. Compute $c _ 1 = g^k \pmod p$ and $c _ 2 = my^k \pmod p$.
> 3. $c _ 1, c _ 2$ are sent to the receiver.
> 4. The receiver calculates $c _ 1^x \equiv g^{xk} \equiv y^k \pmod p$, and find the inverse $y^{-k} \in \mathbb{Z} _ p^\ast$.
> 5. Then $c _ 2y^{-k} \equiv m \pmod p$, recovering the message.
The attacker will see $g^k$. By the hardness of DLP, the attacker is unable to recover $k$ even if he knows $g$.
#### Ephemeral Key Should Be Distinct
If the same $k$ is used twice, the encryption is not secure. Suppose we encrypt two different messages $m_1, m_2 \in \mathbb{Z}_p^\ast$. The attacker will see $(g^k, m_1y^k)$ and $(g^k, m_2 y^k)$. Then since we are in a multiplicative group $\mathbb{Z}_p^\ast$, inverses exist. So
If the same $k$ is used twice, the encryption is not secure. Suppose we encrypt two different messages $m _ 1, m _ 2 \in \mathbb{Z} _ p^\ast$. The attacker will see $(g^k, m _ 1y^k)$ and $(g^k, m _ 2 y^k)$. Then since we are in a multiplicative group $\mathbb{Z} _ p^\ast$, inverses exist. So
$$
m_1y^k \cdot (m_2 y^k)^{-1} \equiv m_1m_2^{-1} \equiv 1 \pmod p
m _ 1y^k \cdot (m _ 2 y^k)^{-1} \equiv m _ 1m _ 2^{-1} \equiv 1 \pmod p
$$
which implies that $m_1 \equiv m_2 \pmod p$, leaking some information.
which implies that $m _ 1 \equiv m _ 2 \pmod p$, leaking some information.
[^1]: If one of the primes is small, factoring is easy. Therefore we require that $p, q$ both be large primes.
[^2]: There is a quantum polynomial time (BQP) algorithm for integer factorization. See [Shor's algorithm](https://en.wikipedia.org/wiki/Shor%27s_algorithm).