fix: underscores inside equations are rendered correctly (#57)

* [PUBLISHER] upload files #52

* PUSH NOTE : 08. Comparison with the Riemann Integral.md

* PUSH ATTACHMENT : mt-08.png

* PUSH NOTE : 07. Dominated Convergence Theorem.md

* PUSH ATTACHMENT : mt-07.png

* PUSH NOTE : 06. Convergence Theorems.md

* PUSH ATTACHMENT : mt-06.png

* PUSH NOTE : 05. Lebesgue Integration.md

* PUSH ATTACHMENT : mt-05.png

* PUSH NOTE : 04. Measurable Functions.md

* PUSH ATTACHMENT : mt-04.png

* PUSH NOTE : 03. Measure Spaces.md

* PUSH ATTACHMENT : mt-03.png

* PUSH NOTE : 02. Construction of Measure.md

* PUSH ATTACHMENT : mt-02.png

* PUSH NOTE : 01. Algebra of Sets and Set Functions.md

* PUSH ATTACHMENT : mt-01.png

* [PUBLISHER] upload files #53

* PUSH NOTE : 08. Comparison with the Riemann Integral.md

* PUSH ATTACHMENT : mt-08.png

* PUSH NOTE : 07. Dominated Convergence Theorem.md

* PUSH ATTACHMENT : mt-07.png

* PUSH NOTE : 06. Convergence Theorems.md

* PUSH ATTACHMENT : mt-06.png

* PUSH NOTE : 05. Lebesgue Integration.md

* PUSH ATTACHMENT : mt-05.png

* PUSH NOTE : 04. Measurable Functions.md

* PUSH ATTACHMENT : mt-04.png

* PUSH NOTE : 03. Measure Spaces.md

* PUSH ATTACHMENT : mt-03.png

* PUSH NOTE : 02. Construction of Measure.md

* PUSH ATTACHMENT : mt-02.png

* PUSH NOTE : 01. Algebra of Sets and Set Functions.md

* PUSH ATTACHMENT : mt-01.png

* [PUBLISHER] upload files #54

* PUSH NOTE : 08. Comparison with the Riemann Integral.md

* PUSH ATTACHMENT : mt-08.png

* PUSH NOTE : 07. Dominated Convergence Theorem.md

* PUSH ATTACHMENT : mt-07.png

* PUSH NOTE : 06. Convergence Theorems.md

* PUSH ATTACHMENT : mt-06.png

* PUSH NOTE : 05. Lebesgue Integration.md

* PUSH ATTACHMENT : mt-05.png

* PUSH NOTE : 04. Measurable Functions.md

* PUSH ATTACHMENT : mt-04.png

* PUSH NOTE : 03. Measure Spaces.md

* PUSH ATTACHMENT : mt-03.png

* PUSH NOTE : 02. Construction of Measure.md

* PUSH ATTACHMENT : mt-02.png

* PUSH NOTE : 01. Algebra of Sets and Set Functions.md

* PUSH ATTACHMENT : mt-01.png

* [PUBLISHER] upload files #55

* PUSH NOTE : 08. Comparison with the Riemann Integral.md

* PUSH ATTACHMENT : mt-08.png

* PUSH NOTE : 07. Dominated Convergence Theorem.md

* PUSH ATTACHMENT : mt-07.png

* PUSH NOTE : 06. Convergence Theorems.md

* PUSH ATTACHMENT : mt-06.png

* PUSH NOTE : 05. Lebesgue Integration.md

* PUSH ATTACHMENT : mt-05.png

* PUSH NOTE : 04. Measurable Functions.md

* PUSH ATTACHMENT : mt-04.png

* PUSH NOTE : 03. Measure Spaces.md

* PUSH ATTACHMENT : mt-03.png

* PUSH NOTE : 02. Construction of Measure.md

* PUSH ATTACHMENT : mt-02.png

* PUSH NOTE : 01. Algebra of Sets and Set Functions.md

* PUSH ATTACHMENT : mt-01.png

* [PUBLISHER] upload files #56

* PUSH NOTE : 02. Construction of Measure.md

* PUSH ATTACHMENT : mt-02.png
This commit is contained in:
2023-07-27 09:45:06 +09:00
committed by GitHub
parent 7659ee420a
commit 46cf52ebf1
8 changed files with 207 additions and 214 deletions

View File

@@ -19,11 +19,11 @@ Construction of measure 증명에서 추가로 참고할 내용입니다.
**명제.** $A$가 열린집합이면 $A \in \mathfrak{M}(\mu)$ 이다. 또한 $A^C \in \mathfrak{M}(\mu)$ 이므로, $F$가 닫힌집합이면 $F \in \mathfrak{M}(\mu)$ 이다.
**증명.** 중심이 $x\in \mathbb{R}^p$ 이고 반지름이 $r$인 열린 box를 $I(x, r)$이라 두자. $I(x, r)$은 명백히 $\mathfrak{M}_F(\mu)$의 원소이다. 이제
**증명.** 중심이 $x\in \mathbb{R}^p$ 이고 반지름이 $r$인 열린 box를 $I(x, r)$이라 두자. $I(x, r)$은 명백히 $\mathfrak{M} _ F(\mu)$의 원소이다. 이제
$$A = \bigcup_{\substack{x \in \mathbb{Q}^p, \; r \in \mathbb{Q}\\ I(x, r)\subseteq A}} I(x, r)$$
$$A = \bigcup_ {\substack{x \in \mathbb{Q}^p, \; r \in \mathbb{Q}\\ I(x, r)\subseteq A}} I(x, r)$$
로 적을 수 있으므로 $A$는 $\mathfrak{M}_F(\mu)$의 원소들의 countable union이 되어 $A \in \mathfrak{M}(\mu)$ 이다. 이제 $\mathfrak{M}(\mu)$가 $\sigma$-algebra이므로 $A^C\in \mathfrak{M}(\mu)$ 이고, 이로부터 임의의 닫힌집합 $F$도 $\mathfrak{M}(\mu)$의 원소임을 알 수 있다.
로 적을 수 있으므로 $A$는 $\mathfrak{M} _ F(\mu)$의 원소들의 countable union이 되어 $A \in \mathfrak{M}(\mu)$ 이다. 이제 $\mathfrak{M}(\mu)$가 $\sigma$-algebra이므로 $A^C\in \mathfrak{M}(\mu)$ 이고, 이로부터 임의의 닫힌집합 $F$도 $\mathfrak{M}(\mu)$의 원소임을 알 수 있다.
**명제.** $A \in \mathfrak{M}(\mu)$ 이면 임의의 $\epsilon > 0$ 에 대하여
@@ -33,15 +33,15 @@ $$F \subseteq A \subseteq G, \quad \mu\left( G \setminus A \right) < \epsilon, \
이는 정의역을 $\mathfrak{M}(\mu)$ 줄였음에도 $\mu$ 여전히 $\mathfrak{M}(\mu)$ 위에서 regular라는 뜻입니다.
**증명.** $A = \bigcup_{n=1}^\infty A_n$ ($A_n \in \mathfrak{M}_F(\mu)$) 두고 $\epsilon > 0$ 을 고정하자. 각 $n \in \mathbb{N}$ 에 대하여 열린집합 $B_{n, k} \in \Sigma$ 를 잡아 $A_n \subseteq\bigcup_{k=1}^\infty B_{n, k}$ 와
**증명.** $A = \bigcup_ {n=1}^\infty A_n$ ($A_n \in \mathfrak{M} _ F(\mu)$) 로 두고 $\epsilon > 0$ 을 고정하자. 각 $n \in \mathbb{N}$ 에 대하여 열린집합 $B_ {n, k} \in \Sigma$ 잡아 $A_n \subseteq\bigcup_ {k=1}^\infty B_ {n, k}$
$$\mu\left( \bigcup_{k=1}^{\infty} B_{n, k} \right) \leq \sum_{k=1}^{\infty} \mu\left( B_{n, k} \right) < \mu\left( A_n \right) + 2^{-n}\epsilon$$
$$\mu\left( \bigcup_ {k=1}^{\infty} B_ {n, k} \right) \leq \sum_ {k=1}^{\infty} \mu\left( B_ {n, k} \right) < \mu\left( A_n \right) + 2^{-n}\epsilon$$
만족하도록 있다.[^1]
이제 열린집합을 잡아보자. $G_n = \bigcup_{k=1}^{\infty} B_{n, k}$ 으로 두고 $G = \bigcup_{n=1}^{\infty} G_n$ 잡는다. $A_n \in \mathfrak{M}_F(\mu)$ 이므로 $\mu\left( A_n \right) < \infty$ 이고, 다음이 성립한다.
이제 열린집합을 잡아보자. $G_n = \bigcup_ {k=1}^{\infty} B_ {n, k}$ 으로 두고 $G = \bigcup_ {n=1}^{\infty} G_n$ 잡는다. $A_n \in \mathfrak{M} _ F(\mu)$ 이므로 $\mu\left( A_n \right) < \infty$ 이고, 다음이 성립한다.
$$\begin{aligned} \mu\left( G \setminus A \right) & = \mu\left( \bigcup_{n=1}^{\infty} G_n \setminus\bigcup_{n=1}^{\infty} A_n \right) \leq \mu\left( \bigcup_{n=1}^{\infty} G_n \setminus A_n \right) \\ &\leq \sum_{n=1}^{\infty} \mu\left( G_n \setminus A_n \right) \leq \sum_{n=1}^{\infty} 2^{-n}\epsilon = \epsilon. \end{aligned}$$
$$\begin{aligned} \mu\left( G \setminus A \right) & = \mu\left( \bigcup_ {n=1}^{\infty} G_n \setminus\bigcup_ {n=1}^{\infty} A_n \right) \leq \mu\left( \bigcup_ {n=1}^{\infty} G_n \setminus A_n \right) \\ &\leq \sum_ {n=1}^{\infty} \mu\left( G_n \setminus A_n \right) \leq \sum_ {n=1}^{\infty} 2^{-n}\epsilon = \epsilon. \end{aligned}$$
닫힌집합의 존재성을 보이기 위해 과정을 $A^C$ 대해 반복하면 $A^C \subseteq F^C$, $\mu\left( F^C \setminus A^C \right) < \epsilon$ 되도록 열린집합 $F^C$ 잡을 있다. $F$ 닫힌집합이고 $F^C \setminus A^C = F^C \cap A = A\setminus F$ 이므로 $\mu\left( A \setminus F \right) < \epsilon$ 이고 $F\subseteq A$ 이다.
@@ -49,7 +49,7 @@ $$\begin{aligned} \mu\left( G \setminus A \right) & = \mu\left( \bigcup_{
Borel $\sigma$-algebra는 $\mathbb{R}^p$ 열린집합을 포함하는 가장 작은 $\sigma$-algebra로 정의할 수도 있습니다. $O$ $\mathbb{R}^p$ 열린집합의 모임이라 하면
$$\mathfrak{B} = \bigcap_{O \subseteq G,\;G:\, \sigma\text{-algebra}} G$$
$$\mathfrak{B} = \bigcap_ {O \subseteq G,\;G:\, \sigma\text{-algebra}} G$$
정의합니다. 여기서 '가장 작은' 의미는 집합의 관점에서 가장 작다는 의미로, 조건을 만족하는 임의의 집합 $X$ 가져오더라도 $X \subseteq\mathfrak{B}$ 라는 뜻입니다. 그래서 교집합을 택하게 됩니다. 정의에 의해 $\mathfrak{B} \subseteq\mathfrak{M}(\mu)$ 임도 있습니다.
@@ -63,11 +63,11 @@ $$\mathfrak{B} = \bigcap_{O \subseteq G,\;G:\, \sigma\text{-algebra}} G$$
$$F_n \subseteq A \subseteq G_n, \quad \mu\left( G_n \setminus A \right) < \frac{1}{n}, \quad \mu\left( A \setminus F_n \right) < \frac{1}{n}.$$
이제 $F = \bigcup_{n=1}^{\infty} F_n$, $G = \bigcap_{n=1}^{\infty} G_n$ 정의하면 $F, G \in \mathfrak{B}$ 이고 $F \subseteq A \subseteq G$ 이다.
이제 $F = \bigcup_ {n=1}^{\infty} F_n$, $G = \bigcap_ {n=1}^{\infty} G_n$ 정의하면 $F, G \in \mathfrak{B}$ 이고 $F \subseteq A \subseteq G$ 이다.
한편, $A = F \cup (A \setminus F)$, $G = A \cup (G \setminus A)$ 적을 있다. 그런데 $n \rightarrow\infty$
$$\left.\begin{array}{r}\mu\left( G \setminus A \right)\leq \mu\left( G_n \setminus A \right) < \frac{1}{n} \\ \mu\left( A \setminus F \right) \leq \mu\left( A \setminus F_n \right) < \frac{1}{n}\end{array}\right\rbrace \rightarrow 0$$
$$\left.\begin{array}{r}\mu\left( G \setminus A \right)\leq \mu\left( G_n \setminus A \right) < \frac{1}{n} \\ \mu\left( A \setminus F \right) \leq \mu\left( A \setminus F_n \right) < \frac{1}{n}\end{array}\right\rbrace \rightarrow 0$$
이므로 $A \in \mathfrak{M}(\mu)$ Borel set $\mu$-measure zero set의 합집합이다. 그리고 $A \in \mathfrak{M}(\mu)$ 적당한 $\mu$-measure zero set을 합집합하여 Borel set이 되게 있다.
@@ -75,7 +75,7 @@ $$\left.\begin{array}{r}\mu\left( G \setminus A \right)\leq \mu\left( G_n \setmi
**증명.** Countable subadditivity를 확인하면 나머지는 자명하다. 모든 $n\in \mathbb{N}$ 대하여 $\mu\left( A_n \right) = 0$ 이라 하면
$$\mu\left( \bigcup_{n=1}^{\infty} A_n \right) \leq \sum_{n=1}^{\infty} \mu\left( A_n \right) = 0$$
$$\mu\left( \bigcup_ {n=1}^{\infty} A_n \right) \leq \sum_ {n=1}^{\infty} \mu\left( A_n \right) = 0$$
이다.
@@ -91,7 +91,7 @@ Uncountable인 경우에는 Cantor set $P$를 생각한다. $E_n$을 다음과
- $E_2 = \left[0, \frac{1}{9}\right] \cup \left[\frac{2}{9}, \frac{3}{9}\right] \cup \left[\frac{6}{9}, \frac{7}{9}\right] \cup \left[\frac{8}{9}, 1\right]$, 마찬가지로 $E_1$ 구간을 3등분하여 가운데를 제외한 것이다.
과정을 반복하여 $E_n$ 얻고, Cantor set은 $P = \bigcap_{n=1}^{\infty} E_n$ 정의한다. 여기서 $m(E_n) = \left( \frac{2}{3} \right)^n$ 임을 있고, $P \subseteq E_n$ 이므로 $m(P)\leq m(E_n)$ 성립한다. 이제 $n \rightarrow\infty$ 두면 $m(P) = 0$ 이다.
과정을 반복하여 $E_n$ 얻고, Cantor set은 $P = \bigcap_ {n=1}^{\infty} E_n$ 정의한다. 여기서 $m(E_n) = \left( \frac{2}{3} \right)^n$ 임을 있고, $P \subseteq E_n$ 이므로 $m(P)\leq m(E_n)$ 성립한다. 이제 $n \rightarrow\infty$ 두면 $m(P) = 0$ 이다.
**참고.** $\mathfrak{M}(m) \subsetneq \mathcal{P}(\mathbb{R}^p)$. $\mathbb{R}^p$ 부분집합 measurable하지 않은 집합이 존재한다.[^2]
@@ -118,4 +118,3 @@ Uncountable인 경우에는 Cantor set $P$를 생각한다. $E_n$을 다음과
[^1]: 번째 부등식은 countable subadditivity, 번째 부등식은 $\mu^\ast$ 정의에서 나온다.
[^2]: [Vitali set](https://en.wikipedia.org/wiki/Vitali_set) 참고.