mirror of
https://github.com/calofmijuck/blog.git
synced 2025-12-06 22:53:51 +00:00
[PUBLISHER] upload files #170
* PUSH NOTE : 05. Lebesgue Integration.md * PUSH NOTE : 04. Measurable Functions.md * PUSH NOTE : 03. Measure Spaces.md * PUSH NOTE : 02. Construction of Measure.md * PUSH NOTE : Rules of Inference with Coq.md * PUSH NOTE : 9. Public Key Encryption.md * PUSH NOTE : 7. Key Exchange.md * PUSH NOTE : 6. Hash Functions.md * PUSH NOTE : 5. CCA-Security and Authenticated Encryption.md * PUSH NOTE : 2. PRFs, PRPs and Block Ciphers.md * PUSH NOTE : 14. Secure Multiparty Computation.md * PUSH NOTE : 07. Public Key Cryptography.md * PUSH NOTE : 06. RSA and ElGamal Encryption.md * PUSH NOTE : 05. Modular Arithmetic (2).md * PUSH NOTE : 03. Symmetric Key Cryptography (2).md * PUSH NOTE : 02. Symmetric Key Cryptography (1).md * DELETE FILE : _posts/Lecture Notes/Modern Cryptography/2023-10-19-public-key-encryption.md * DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-10-09-public-key-cryptography.md
This commit is contained in:
@@ -2,11 +2,16 @@
|
||||
share: true
|
||||
toc: true
|
||||
math: true
|
||||
categories: [Mathematics, Measure Theory]
|
||||
tags: [math, analysis, measure-theory]
|
||||
title: "04. Measurable Functions"
|
||||
date: "2023-02-06"
|
||||
github_title: "2023-02-06-measurable-functions"
|
||||
categories:
|
||||
- Mathematics
|
||||
- Measure Theory
|
||||
tags:
|
||||
- math
|
||||
- analysis
|
||||
- measure-theory
|
||||
title: 04. Measurable Functions
|
||||
date: 2023-02-06
|
||||
github_title: 2023-02-06-measurable-functions
|
||||
image:
|
||||
path: /assets/img/posts/Mathematics/Measure Theory/mt-04.png
|
||||
attachment:
|
||||
@@ -139,7 +144,7 @@ $$\begin{aligned} \lbrace x \in X : F\bigl(f(x), g(x)\bigr) > a\rbrace =
|
||||
|
||||
$$\chi_E(x) = \begin{cases} 1 & (x\in E) \\ 0 & (x \notin E). \end{cases}$$
|
||||
|
||||
참고로 characteristic function은 indicator function 등으로도 불리며, $\mathbf{1} _ E, K_E$로 표기하는 경우도 있습니다.
|
||||
참고로 characteristic function은 indicator function 등으로도 불리며, $\mathbf{1}_E, K_E$로 표기하는 경우도 있습니다.
|
||||
|
||||
## Simple Function
|
||||
|
||||
@@ -155,7 +160,7 @@ $$s(x) = \sum_ {i=1}^{n} c_i \chi_ {E_i}(x).$$
|
||||
|
||||
여기서 $E_i$에 measurable 조건이 추가되면, 정의에 의해 $\chi_ {E_i}$도 measurable function입니다. 따라서 모든 measurable simple function을 measurable $\chi_ {E_i}$의 linear combination으로 표현할 수 있습니다.
|
||||
|
||||

|
||||

|
||||
|
||||
아래 정리는 simple function이 Lebesgue integral의 building block이 되는 이유를 잘 드러냅니다. 모든 함수는 simple function으로 근사할 수 있습니다.
|
||||
|
||||
|
||||
Reference in New Issue
Block a user