[PUBLISHER] upload files #170

* PUSH NOTE : 05. Lebesgue Integration.md

* PUSH NOTE : 04. Measurable Functions.md

* PUSH NOTE : 03. Measure Spaces.md

* PUSH NOTE : 02. Construction of Measure.md

* PUSH NOTE : Rules of Inference with Coq.md

* PUSH NOTE : 9. Public Key Encryption.md

* PUSH NOTE : 7. Key Exchange.md

* PUSH NOTE : 6. Hash Functions.md

* PUSH NOTE : 5. CCA-Security and Authenticated Encryption.md

* PUSH NOTE : 2. PRFs, PRPs and Block Ciphers.md

* PUSH NOTE : 14. Secure Multiparty Computation.md

* PUSH NOTE : 07. Public Key Cryptography.md

* PUSH NOTE : 06. RSA and ElGamal Encryption.md

* PUSH NOTE : 05. Modular Arithmetic (2).md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* PUSH NOTE : 02. Symmetric Key Cryptography (1).md

* DELETE FILE : _posts/Lecture Notes/Modern Cryptography/2023-10-19-public-key-encryption.md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-10-09-public-key-cryptography.md
This commit is contained in:
2024-11-13 10:49:03 +09:00
committed by GitHub
parent 78691732a8
commit 6960edd3d4
13 changed files with 134 additions and 114 deletions

View File

@@ -2,11 +2,16 @@
share: true
toc: true
math: true
categories: [Mathematics, Measure Theory]
tags: [math, analysis, measure-theory]
title: "04. Measurable Functions"
date: "2023-02-06"
github_title: "2023-02-06-measurable-functions"
categories:
- Mathematics
- Measure Theory
tags:
- math
- analysis
- measure-theory
title: 04. Measurable Functions
date: 2023-02-06
github_title: 2023-02-06-measurable-functions
image:
path: /assets/img/posts/Mathematics/Measure Theory/mt-04.png
attachment:
@@ -139,7 +144,7 @@ $$\begin{aligned} \lbrace x \in X : F\bigl(f(x), g(x)\bigr) > a\rbrace =
$$\chi_E(x) = \begin{cases} 1 & (x\in E) \\ 0 & (x \notin E). \end{cases}$$
참고로 characteristic function은 indicator function 등으로도 불리며, $\mathbf{1} _ E, K_E$로 표기하는 경우도 있습니다.
참고로 characteristic function은 indicator function 등으로도 불리며, $\mathbf{1}_E, K_E$로 표기하는 경우도 있습니다.
## Simple Function
@@ -155,7 +160,7 @@ $$s(x) = \sum_ {i=1}^{n} c_i \chi_ {E_i}(x).$$
여기서 $E_i$에 measurable 조건이 추가되면, 정의에 의해 $\chi_ {E_i}$도 measurable function입니다. 따라서 모든 measurable simple function을 measurable $\chi_ {E_i}$의 linear combination으로 표현할 수 있습니다.
![mt-04.png](/assets/img/posts/Mathematics/Measure%20Theory/mt-04.png)
![mt-04.png](../../../assets/img/posts/Mathematics/Measure%20Theory/mt-04.png)
아래 정리는 simple function이 Lebesgue integral의 building block이 되는 이유를 잘 드러냅니다. 모든 함수는 simple function으로 근사할 수 있습니다.