mirror of
https://github.com/calofmijuck/blog.git
synced 2025-12-06 22:53:51 +00:00
[PUBLISHER] upload files #170
* PUSH NOTE : 05. Lebesgue Integration.md * PUSH NOTE : 04. Measurable Functions.md * PUSH NOTE : 03. Measure Spaces.md * PUSH NOTE : 02. Construction of Measure.md * PUSH NOTE : Rules of Inference with Coq.md * PUSH NOTE : 9. Public Key Encryption.md * PUSH NOTE : 7. Key Exchange.md * PUSH NOTE : 6. Hash Functions.md * PUSH NOTE : 5. CCA-Security and Authenticated Encryption.md * PUSH NOTE : 2. PRFs, PRPs and Block Ciphers.md * PUSH NOTE : 14. Secure Multiparty Computation.md * PUSH NOTE : 07. Public Key Cryptography.md * PUSH NOTE : 06. RSA and ElGamal Encryption.md * PUSH NOTE : 05. Modular Arithmetic (2).md * PUSH NOTE : 03. Symmetric Key Cryptography (2).md * PUSH NOTE : 02. Symmetric Key Cryptography (1).md * DELETE FILE : _posts/Lecture Notes/Modern Cryptography/2023-10-19-public-key-encryption.md * DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-10-09-public-key-cryptography.md
This commit is contained in:
@@ -2,11 +2,16 @@
|
||||
share: true
|
||||
toc: true
|
||||
math: true
|
||||
categories: [Mathematics, Measure Theory]
|
||||
tags: [math, analysis, measure-theory]
|
||||
title: "05. Lebesgue Integration"
|
||||
date: "2023-02-13"
|
||||
github_title: "2023-02-13-lebesgue-integration"
|
||||
categories:
|
||||
- Mathematics
|
||||
- Measure Theory
|
||||
tags:
|
||||
- math
|
||||
- analysis
|
||||
- measure-theory
|
||||
title: 05. Lebesgue Integration
|
||||
date: 2023-02-13
|
||||
github_title: 2023-02-13-lebesgue-integration
|
||||
image:
|
||||
path: /assets/img/posts/Mathematics/Measure Theory/mt-05.png
|
||||
attachment:
|
||||
@@ -19,9 +24,9 @@ attachment:
|
||||
|
||||
$E \in \mathscr{F}$ 일 때, 적분을 정의하기 위해
|
||||
|
||||
$$\mathscr{F} _ E = \lbrace A \cap E : A \in \mathscr{F}\rbrace, \quad \mu_E = \mu|_ {\mathscr{F} _ E}$$
|
||||
$$\mathscr{F}_E = \lbrace A \cap E : A \in \mathscr{F}\rbrace, \quad \mu_E = \mu|_ {\mathscr{F}_E}$$
|
||||
|
||||
로 설정하고 $\int = \int_E$ 로 두어 ($X, \mathscr{F} _ E, \mu_E$) 위에서 적분을 정의할 수 있습니다. 그러나 굳이 이렇게 하지 않아도 됩니다. $\int = \int_X$ 로 두고
|
||||
로 설정하고 $\int = \int_E$ 로 두어 ($X, \mathscr{F}_E, \mu_E$) 위에서 적분을 정의할 수 있습니다. 그러나 굳이 이렇게 하지 않아도 됩니다. $\int = \int_X$ 로 두고
|
||||
|
||||
$$\int_E f \,d{\mu} = \int f \chi _E \,d{\mu}$$
|
||||
|
||||
@@ -45,7 +50,7 @@ $$\int \chi_A \,d{\mu} = \mu(A)$$
|
||||
|
||||
다음으로 양의 값을 갖는 measurable simple function에 대해 정의합니다. $f = f^+ - f^-$ 에서 $f^+, f^-$ 모두 양의 값을 갖기 때문에 양의 값에 대해 먼저 정의합니다.
|
||||
|
||||
**(Step 2)** $f: X \rightarrow[0, \infty)$ 가 measurable simple function이라 하자. 그러면 $A_k \subseteq\mathscr{F}$ 이면서 쌍마다 서로소인 집합열 $\left( A_k \right) _ {k=1}^n$과 $a_k \in [0, \infty)$ 인 수열 $\left( a_k \right) _ {k=1}^n$을 잡아
|
||||
**(Step 2)** $f: X \rightarrow[0, \infty)$ 가 measurable simple function이라 하자. 그러면 $A_k \subseteq\mathscr{F}$ 이면서 쌍마다 서로소인 집합열 $\left( A_k \right)_{k=1}^n$과 $a_k \in [0, \infty)$ 인 수열 $\left( a_k \right)_{k=1}^n$을 잡아
|
||||
|
||||
$$f(x) = \sum_ {k=1}^n a_k \chi_ {A_k}$$
|
||||
|
||||
@@ -121,7 +126,7 @@ $$\int f \,d{\mu} = \sup\left\lbrace \int h \,d{\mu}: 0\leq h \leq f, h \text{ m
|
||||
|
||||
$f$보다 작은 measurable simple function의 적분값 중 상한을 택하겠다는 의미입니다. $f$보다 작은 measurable simple function으로 $f$를 근사한다고도 이해할 수 있습니다. 또한 $f$가 simple function이면 Step 2의 정의와 일치하는 것을 알 수 있습니다.
|
||||
|
||||

|
||||

|
||||
|
||||
$f \geq 0$ 가 measurable이면 증가하는 measurable simple 함수열 $s_n$이 존재함을 지난 번에 보였습니다. 이 $s_n$에 대하여 적분값을 계산해보면
|
||||
|
||||
|
||||
Reference in New Issue
Block a user