mirror of
https://github.com/calofmijuck/blog.git
synced 2025-12-06 14:53:50 +00:00
[PUBLISHER] upload files #107
* PUSH NOTE : 5. CCA-Security and Authenticated Encryption.md * PUSH ATTACHMENT : mc-05-ci.png * PUSH ATTACHMENT : mc-05-etm-mte.png
This commit is contained in:
@@ -36,7 +36,7 @@ Now we define a stronger notion of security against **chosen ciphertext attacks*
|
|||||||
> - *Encryption*: Send $m_i$ and receive $c'_i = E(k, m_i)$.
|
> - *Encryption*: Send $m_i$ and receive $c'_i = E(k, m_i)$.
|
||||||
> - *Decryption*: Send $c_i$ and receive $m'_i = D(k, c_i)$.
|
> - *Decryption*: Send $c_i$ and receive $m'_i = D(k, c_i)$.
|
||||||
> - Note that $\mathcal{A}$ is not allowed to make a decryption query for any $c_i'$.
|
> - Note that $\mathcal{A}$ is not allowed to make a decryption query for any $c_i'$.
|
||||||
> 3. $\mathcal{A}$ outputs a pair of messages $(m_0^*, m_1^*)$.
|
> 3. $\mathcal{A}$ outputs a pair of messages $(m_0^ * , m_1^*)$.
|
||||||
> 4. The challenger generates $c^* \leftarrow E(k, m_b^*)$ and gives it to $\mathcal{A}$.
|
> 4. The challenger generates $c^* \leftarrow E(k, m_b^*)$ and gives it to $\mathcal{A}$.
|
||||||
> 5. $\mathcal{A}$ is allowed to keep making queries, but not allowed to make a decryption query for $c^*$.
|
> 5. $\mathcal{A}$ is allowed to keep making queries, but not allowed to make a decryption query for $c^*$.
|
||||||
> 6. The adversary computes and outputs a bit $b' \in \left\lbrace 0, 1 \right\rbrace$.
|
> 6. The adversary computes and outputs a bit $b' \in \left\lbrace 0, 1 \right\rbrace$.
|
||||||
@@ -67,7 +67,7 @@ An adversary at destination 25 wants to receive the message sent to destination
|
|||||||
|
|
||||||
Suppose we used CBC mode encryption. Then the first block of the ciphertext would contain the IV, the next block would contain $E(k, \mathrm{IV} \oplus m_0)$.
|
Suppose we used CBC mode encryption. Then the first block of the ciphertext would contain the IV, the next block would contain $E(k, \mathrm{IV} \oplus m_0)$.
|
||||||
|
|
||||||
The adversary can generate a new ciphertext $c'$ without knowing the actual key. Set the new IV as $\mathrm{IV}' =\mathrm{IV} \oplus m^*$ where $m^*$ contains a payload that can change $\texttt{80}$ to $\texttt{25}$. (This can be calculated)
|
The adversary can generate a new ciphertext $c'$ without knowing the actual key. Set the new IV as $\mathrm{IV}' =\mathrm{IV} \oplus m^ *$ where $m^ *$ contains a payload that can change $\texttt{80}$ to $\texttt{25}$. (This can be calculated)
|
||||||
|
|
||||||
Then the decryption works as normal,
|
Then the decryption works as normal,
|
||||||
|
|
||||||
@@ -118,7 +118,7 @@ This theorem enables us to use AE secure schemes as a CCA secure scheme.
|
|||||||
|
|
||||||
> **Theorem.** Let $\mathcal{E} = (E, D)$ be a cipher. If $\mathcal{E}$ is AE-secure, then it is CCA-secure.
|
> **Theorem.** Let $\mathcal{E} = (E, D)$ be a cipher. If $\mathcal{E}$ is AE-secure, then it is CCA-secure.
|
||||||
>
|
>
|
||||||
> For any efficient $q$-query CCA adversary $\mathcal{A}$, there exists efficient adversaries $\mathcal{B}_\mathrm{CPA}$ and $\mathcal{B}_\mathrm{CI}$ such that
|
> For any efficient $q$-query CCA adversary $\mathcal{A}$, there exists efficient adversaries $\mathcal{B} _ \mathrm{CPA}$ and $\mathcal{B} _ \mathrm{CI}$ such that
|
||||||
>
|
>
|
||||||
> $$
|
> $$
|
||||||
> \mathrm{Adv}_{\mathrm{CCA}}[\mathcal{A}, \mathcal{E}] \leq \mathrm{Adv}_{\mathrm{CPA}}[\mathcal{B}_\mathrm{CPA}, \mathcal{E}] + 2q \cdot \mathrm{Adv}_{\mathrm{CI}}[\mathcal{B}_\mathrm{CI}, \mathcal{E}].
|
> \mathrm{Adv}_{\mathrm{CCA}}[\mathcal{A}, \mathcal{E}] \leq \mathrm{Adv}_{\mathrm{CPA}}[\mathcal{B}_\mathrm{CPA}, \mathcal{E}] + 2q \cdot \mathrm{Adv}_{\mathrm{CI}}[\mathcal{B}_\mathrm{CI}, \mathcal{E}].
|
||||||
@@ -182,13 +182,13 @@ In **Encrypt-then-MAC**, the encrypted message is signed, and is known to be sec
|
|||||||
|
|
||||||
> **Theorem.** Let $\mathcal{E} = (E, D)$ be a cipher and let $\Pi = (S, V)$ be a MAC system. If $\mathcal{E}$ is CPA secure cipher and $\Pi$ is a strongly secure MAC, then $\mathcal{E}_\mathrm{EtM}$ is AE secure.
|
> **Theorem.** Let $\mathcal{E} = (E, D)$ be a cipher and let $\Pi = (S, V)$ be a MAC system. If $\mathcal{E}$ is CPA secure cipher and $\Pi$ is a strongly secure MAC, then $\mathcal{E}_\mathrm{EtM}$ is AE secure.
|
||||||
>
|
>
|
||||||
> For every efficient CI adversary $\mathcal{A}_\mathrm{CI}$ attacking $\mathcal{E}_\mathrm{EtM}$, there exists an efficient MAC adversary $\mathcal{B}_\mathrm{MAC}$ attacking $\Pi$ such that
|
> For every efficient CI adversary $\mathcal{A} _ \mathrm{CI}$ attacking $\mathcal{E} _ \mathrm{EtM}$, there exists an efficient MAC adversary $\mathcal{B} _ \mathrm{MAC}$ attacking $\Pi$ such that
|
||||||
>
|
>
|
||||||
> $$
|
> $$
|
||||||
> \mathrm{Adv}_{\mathrm{CI}}[\mathcal{A}_\mathrm{CI}, \mathcal{E}_\mathrm{EtM}] = \mathrm{Adv}_{\mathrm{MAC}}[\mathcal{B}_\mathrm{MAC}, \Pi].
|
> \mathrm{Adv}_{\mathrm{CI}}[\mathcal{A}_\mathrm{CI}, \mathcal{E}_\mathrm{EtM}] = \mathrm{Adv}_{\mathrm{MAC}}[\mathcal{B}_\mathrm{MAC}, \Pi].
|
||||||
> $$
|
> $$
|
||||||
>
|
>
|
||||||
> For every efficient CPA adversary $\mathcal{A}_\mathrm{CPA}$ attacking $\mathcal{E}_\mathrm{EtM}$, there exists an efficient CPA adversary $\mathcal{B}_\mathrm{MAC}$ attacking $\mathcal{E}$ such that
|
> For every efficient CPA adversary $\mathcal{A} _ \mathrm{CPA}$ attacking $\mathcal{E} _ \mathrm{EtM}$, there exists an efficient CPA adversary $\mathcal{B} _ \mathrm{MAC}$ attacking $\mathcal{E}$ such that
|
||||||
>
|
>
|
||||||
> $$
|
> $$
|
||||||
> \mathrm{Adv}_{\mathrm{CPA}}[\mathcal{A}_\mathrm{CPA}, \mathcal{E}_\mathrm{EtM}] = \mathrm{Adv}_{\mathrm{CPA}}[\mathcal{B}_\mathrm{CPA}, \mathcal{E}].
|
> \mathrm{Adv}_{\mathrm{CPA}}[\mathcal{A}_\mathrm{CPA}, \mathcal{E}_\mathrm{EtM}] = \mathrm{Adv}_{\mathrm{CPA}}[\mathcal{B}_\mathrm{CPA}, \mathcal{E}].
|
||||||
|
|||||||
Reference in New Issue
Block a user