mirror of
https://github.com/calofmijuck/blog.git
synced 2025-12-06 22:53:51 +00:00
[PUBLISHER] upload files #154
* PUSH NOTE : You and Your Research, Richard Hamming.md * PUSH NOTE : 18. Bootstrapping & CKKS.md * PUSH NOTE : 17. BGV Scheme.md * PUSH NOTE : 16. The GMW Protocol.md * PUSH NOTE : 15. Garbled Circuits.md * PUSH NOTE : 14. Secure Multiparty Computation.md * PUSH NOTE : 13. Sigma Protocols.md * PUSH NOTE : 05. Modular Arithmetic (2).md * PUSH NOTE : 04. Modular Arithmetic (1).md * PUSH NOTE : 02. Symmetric Key Cryptography (1).md * PUSH NOTE : 랜덤 PS일지 (1).md
This commit is contained in:
@@ -9,6 +9,7 @@ tags:
|
||||
- lecture-note
|
||||
- security
|
||||
- cryptography
|
||||
- number-theory
|
||||
title: 04. Modular Arithmetic (1)
|
||||
date: 2023-09-25
|
||||
github_title: 2023-09-25-modular-arithmetic-1
|
||||
@@ -169,7 +170,7 @@ The inverse exists if and only if $\gcd(a, n) = 1$.
|
||||
|
||||
> **Lemma**. For $n \geq 2$ and $a \in \mathbb{Z}$, its inverse $a^{-1} \in \mathbb{Z}_n$ exists if and only if $\gcd(a, n) = 1$.
|
||||
|
||||
*Proof*. We use the Extended Euclidean Algorithm. There exists $u, v \in \mathbb{Z}$ such that
|
||||
*Proof*. We use the extended Euclidean algorithm. There exists $u, v \in \mathbb{Z}$ such that
|
||||
|
||||
$$
|
||||
au + nv = \gcd(a, n).
|
||||
|
||||
Reference in New Issue
Block a user