[PUBLISHER] upload files #154

* PUSH NOTE : You and Your Research, Richard Hamming.md

* PUSH NOTE : 18. Bootstrapping & CKKS.md

* PUSH NOTE : 17. BGV Scheme.md

* PUSH NOTE : 16. The GMW Protocol.md

* PUSH NOTE : 15. Garbled Circuits.md

* PUSH NOTE : 14. Secure Multiparty Computation.md

* PUSH NOTE : 13. Sigma Protocols.md

* PUSH NOTE : 05. Modular Arithmetic (2).md

* PUSH NOTE : 04. Modular Arithmetic (1).md

* PUSH NOTE : 02. Symmetric Key Cryptography (1).md

* PUSH NOTE : 랜덤 PS일지 (1).md
This commit is contained in:
2024-11-12 19:52:52 +09:00
committed by GitHub
parent 03f5dec26f
commit b426538413
11 changed files with 115 additions and 71 deletions

View File

@@ -166,7 +166,7 @@ Now we can prove Euler's generalization.
> a^{\phi(n)} \equiv 1 \pmod n.
> $$
*Proof*. Since $\gcd(a, n) = 1$, $a \in \mathbb{Z}_n^{ * }$. Then $a^\left\lvert \mathbb{Z}_n^{ * } \right\lvert = 1$ in $\mathbb{Z}_n$. By the above lemma, we have the desired result.
*Proof*. Since $\gcd(a, n) = 1$, $a \in \mathbb{Z}_n^{ * }$. Then $a^{\left\lvert \mathbb{Z}_n^{ * } \right\lvert} = 1$ in $\mathbb{Z}_n$. By the above lemma, we have the desired result.
*Proof*. (Elementary) Set $f : \mathbb{Z}_n^* \rightarrow \mathbb{Z}_n^*$ as $x \mapsto ax \bmod n$, then the rest of the reasoning follows similarly as in the proof of Fermat's little theorem.
@@ -195,7 +195,7 @@ $\mathbb{Z}_n$ is an additive group, and $\mathbb{Z}_n^*$ is a multiplicative gr
## Chinese Remainder Theorem (CRT)
> **Theorem.** Let $n_1, \dots, n_k$ integers greater than $1$, and let $N = n_1n_2\cdots n_k$. If $n_i$ are pairwise relatively prime, then the system of equations $x \equiv a_i \pmod {n_i}$ has a unique solution modulo $N$.
> **Theorem.** Let $n_1, \dots, n_k$ be integers greater than $1$, and let $N = n_1n_2\cdots n_k$. If $n_i$ are pairwise relatively prime, then the system of equations $x \equiv a_i \pmod {n_i}$ has a unique solution modulo $N$.
>
> *(Abstract Algebra)* The map
>