diff --git a/_posts/lecture-notes/modern-cryptography/2023-09-07-otp-stream-cipher-prgs/2023-09-07-otp-stream-cipher-prgs.md b/_posts/lecture-notes/modern-cryptography/2023-09-07-otp-stream-cipher-prgs/2023-09-07-otp-stream-cipher-prgs.md index 546d65d..80e7326 100644 --- a/_posts/lecture-notes/modern-cryptography/2023-09-07-otp-stream-cipher-prgs/2023-09-07-otp-stream-cipher-prgs.md +++ b/_posts/lecture-notes/modern-cryptography/2023-09-07-otp-stream-cipher-prgs/2023-09-07-otp-stream-cipher-prgs.md @@ -12,11 +12,11 @@ tags: title: 1. One-Time Pad, Stream Ciphers and PRGs date: 2023-09-07 github_title: 2023-09-07-otp-stream-cipher-prgs -image: - path: _posts/lecture-notes/modern-cryptography/2023-09-07-otp-stream-cipher-prgs/mc-01-ss.png -attachment: - folder: _posts/lecture-notes/modern-cryptography/2023-09-07-otp-stream-cipher-prgs path: _posts/lecture-notes/modern-cryptography/2023-09-07-otp-stream-cipher-prgs +image: + path: assets/img/posts/lecture-notes/modern-cryptography/mc-01-ss.png +attachment: + folder: assets/img/posts/lecture-notes/modern-cryptography --- ## Assumptions and Notations @@ -293,7 +293,7 @@ We can deduce that if a PRG is predictable, then it is insecure. *Proof*. Let $\mathcal{A}$ be an efficient adversary (next bit predictor) that predicts $G$. Suppose that $i$ is the index chosen by $\mathcal{A}$. With $\mathcal{A}$, we construct a statistical test $\mathcal{B}$ such that $\mathrm{Adv}_\mathrm{PRG}[\mathcal{B}, G]$ is non-negligible. -![mc-01-prg-game.png](./mc-01-prg-game.png) +![mc-01-prg-game.png](../../../../assets/img/posts/lecture-notes/modern-cryptography/mc-01-prg-game.png) 1. The challenger PRG will send a bit string $x$ to $\mathcal{B}$. - In experiment $0$, PRG gives pseudorandom string $G(k)$. @@ -319,7 +319,7 @@ The theorem implies that if next bit predictors cannot distinguish $G$ from true To motivate the definition of semantic security, we consider a **security game framework** (attack game) between a **challenger** (ex. the creator of some cryptographic scheme) and an **adversary** $\mathcal{A}$ (ex. attacker of the scheme). -![mc-01-ss.png](./mc-01-ss.png) +![mc-01-ss.png](../../../../assets/img/posts/lecture-notes/modern-cryptography/mc-01-ss.png) > **Definition.** Let $\mathcal{E} = (G, E, D)$ be a cipher defined over $(\mathcal{K}, \mathcal{M}, \mathcal{C})$. For a given adversary $\mathcal{A}$, we define two experiments $0$ and $1$. For $b \in \lbrace 0, 1 \rbrace$, define experiment $b$ as follows: > diff --git a/_posts/lecture-notes/modern-cryptography/2023-09-07-otp-stream-cipher-prgs/mc-01-prg-game.png b/assets/img/posts/lecture-notes/modern-cryptography/mc-01-prg-game.png similarity index 100% rename from _posts/lecture-notes/modern-cryptography/2023-09-07-otp-stream-cipher-prgs/mc-01-prg-game.png rename to assets/img/posts/lecture-notes/modern-cryptography/mc-01-prg-game.png diff --git a/_posts/lecture-notes/modern-cryptography/2023-09-07-otp-stream-cipher-prgs/mc-01-ss.png b/assets/img/posts/lecture-notes/modern-cryptography/mc-01-ss.png similarity index 100% rename from _posts/lecture-notes/modern-cryptography/2023-09-07-otp-stream-cipher-prgs/mc-01-ss.png rename to assets/img/posts/lecture-notes/modern-cryptography/mc-01-ss.png