From e5f865ff0c1866224332a872a939d5c433c57c8b Mon Sep 17 00:00:00 2001 From: Sungchan Yi Date: Tue, 1 Aug 2023 23:24:07 +0900 Subject: [PATCH] feat: Measure Theory 09 - L^p spaces (#61) * [PUBLISHER] upload files #58 * PUSH NOTE : 09. Lp Functions.md * PUSH ATTACHMENT : mt-09.png * [PUBLISHER] upload files #59 * PUSH NOTE : 09. Lp Functions.md * PUSH ATTACHMENT : mt-09.png * [PUBLISHER] upload files #60 * PUSH NOTE : 09. Lp Functions.md * PUSH ATTACHMENT : mt-09.png --- .../Measure Theory/2023-07-31-Lp-functions.md | 209 ++++++++++++++++++ assets/img/posts/mt-09.png | Bin 0 -> 8054 bytes 2 files changed, 209 insertions(+) create mode 100644 _posts/Mathematics/Measure Theory/2023-07-31-Lp-functions.md create mode 100644 assets/img/posts/mt-09.png diff --git a/_posts/Mathematics/Measure Theory/2023-07-31-Lp-functions.md b/_posts/Mathematics/Measure Theory/2023-07-31-Lp-functions.md new file mode 100644 index 0000000..52d7640 --- /dev/null +++ b/_posts/Mathematics/Measure Theory/2023-07-31-Lp-functions.md @@ -0,0 +1,209 @@ +--- +share: true +toc: true +math: true +categories: [Mathematics, Measure Theory] +tags: [math, analysis, measure-theory] +title: "09. $\\mathcal{L}^p$ Functions" +date: "2023-07-31" +github_title: "2023-07-31-Lp-functions" +image: + path: /assets/img/posts/mt-09.png +--- + +![mt-09.png](../../../assets/img/posts/mt-09.png){: .w-50} + +## Integration on Complex Valued Function + +Let $(X, \mathscr{F}, \mu)$ be a measure space, and $E \in \mathscr{F}$. + +**정의.** + +1. A complex valued function $f = u + iv$, (where $u, v$ are real functions) is measurable if $u$ and $v$ are both measurable. + +2. For a complex function $f$, + + $$f \in \mathcal{L}^{1}(E, \mu) \iff \int_E \left\lvert f \right\rvert \,d{\mu} < \infty \iff u, v \in \mathcal{L}^{1}(E, \mu).$$ + +3. If $f = u + iv \in \mathcal{L}^{1}(E, \mu)$, we define + + $$\int_E f \,d{\mu} = \int_E u \,d{\mu} + i\int_E v \,d{\mu}.$$ + +**참고.** + +1. Linearity also holds for complex valued functions. For $f_1, f_2 \in \mathcal{L}^{1}(\mu)$ and $\alpha \in \mathbb{C}$, + + $$\int_E \left( f_1 + \alpha f_2 \right) \,d{\mu} = \int_E f_1 \,d{\mu} + \alpha \int_E f_2 \,d{\mu}.$$ + +2. Choose $c \in \mathbb{C}$ and $\left\lvert c \right\rvert = 1$ such that $\displaystyle c \int_E f \,d{\mu} \geq 0$. This is possible since multiplying by $c$ is equivalent to a rotation. + +Now set $cf = u + vi$ where $u, v$ are real functions and the integral of $v$ over $E$ is $0$. Then, + +$$\begin{aligned} \left\lvert \int_E f \,d{\mu} \right\rvert & = c \int_E f\,d{\mu} = \int_E u \,d{\mu} \\ & \leq \int_E (u^2+v^2)^{1/2} \,d{\mu} \\ & = \int_E \left\lvert cf \right\rvert \,d{\mu} = \int_E \left\lvert f \right\rvert \,d{\mu}. \end{aligned}$$ + +## Functions of Class $\mathcal{L}^{p}$ + +### $\mathcal{L}^p$ Space + +Assume that $(X, \mathscr{F}, \mu)$ is given and $X = E$. + +**정의.** ($\mathcal{L}^{p}$) A complex function $f$ is in $\mathcal{L}^{p}(\mu)$ if $f$ is measurable and $\displaystyle\int_E \left\lvert f \right\rvert ^p \,d{\mu} < \infty$. + +**정의.** ($\mathcal{L}^{p}$-norm) **$\mathcal{L}^{p}$-norm** of $f$ is defined as + +$$\left\lVert f \right\rVert_p = \left[\int_E \left\lvert f \right\rvert ^p \,d{\mu} \right]^{1/p}.$$ + +### Inequalities + +**정리.** (Young Inequality) For $a, b \geq 0$, if $p > 1$ and $1/p + 1/q = 1$, then + +$$ab \leq \frac{a^p}{p} + \frac{b^q}{q}.$$ + +**증명.** From $1/p + 1/q = 1$, $p - 1 = \frac{1}{q - 1}$. The graph $y = x^{p - 1}$ is equal to the graph of $x = y^{q - 1}$. Sketch the graph on the $xy$-plane and consider the area bounded by $x = 0$, $x = a$, $y = 0$, $y = b$. Then we directly see that + +$$\int_0^a x^{p-1} \,d{x} + \int_0^b y^{q-1} \,d{y} \geq ab,$$ + +with equality when $a^p = b^q$. Evaluating the integral gives the desired inequality. + +**참고.** For $\mathscr{F}$-measurable $f, g$ on $X$, + +$$\left\lvert fg \right\rvert \leq \frac{\left\lvert f \right\rvert ^p}{p} + \frac{\left\lvert g \right\rvert ^q}{q} \implies \left\lVert fg \right\rVert_1 \leq \frac{\left\lVert f \right\rVert_p^p}{p} + \frac{\left\lVert g \right\rVert_q^q}{q}$$ + +by Young inequality. In particular, if $\left\lVert f \right\rVert_p = \left\lVert g \right\rVert_q = 1$, then $\left\lVert fg \right\rVert_1 \leq 1$. + +**정리.** (Hölder Inequality) Let $1 < p < \infty$ and $\displaystyle\frac{1}{p} + \frac{1}{q} = 1$. If $f, g$ are measurable, + +$$\left\lVert fg \right\rVert_1 \leq \left\lVert f \right\rVert_p \left\lVert g \right\rVert_q.$$ + +So if $f \in \mathcal{L}^{p}(\mu)$ and $g \in \mathcal{L}^{q}(\mu)$, then $fg \in \mathcal{L}^{1}(\mu)$. + +**증명.** If $\left\lVert f \right\rVert_p = 0$ or $\left\lVert g \right\rVert_q = 0$ then $f = 0$ a.e. or $g = 0$ a.e. So $fg = 0$ a.e. and $\left\lVert fg \right\rVert_1 = 0$. + +Now suppose that $\left\lVert f \right\rVert_p > 0$ and $\left\lVert g \right\rVert_q > 0$. By the remark above, the result directly follows from + +$$\left\lVert \frac{f}{\left\lVert f \right\rVert_p} \cdot \frac{g}{\left\lVert g \right\rVert_q} \right\rVert_1 \leq 1.$$ + +**정리.** (Minkowski Inequality) For $1 \leq p < \infty$, if $f, g$ are measurable, then + +$$\left\lVert f + g \right\rVert_p \leq \left\lVert f \right\rVert_p + \left\lVert g \right\rVert_p.$$ + +**증명.** If $f, g \notin \mathcal{L}^{p}$, the right hand side is $\infty$ and we are done. For $p = 1$, the equality is equivalent to the triangle inequality. Also if $\left\lVert f + g \right\rVert_p = 0$, the inequality holds trivially. We suppose that $p > 1$, $f, g \in \mathcal{L}^p$ and $\left\lVert f+g \right\rVert_p > 0$. + +Let $q = \frac{p}{p-1}$. Since + +$$\begin{aligned} \left\lvert f + g \right\rvert ^p & = \left\lvert f + g \right\rvert \cdot \left\lvert f + g \right\rvert ^{p - 1} \\ & \leq \bigl(\left\lvert f \right\rvert + \left\lvert g \right\rvert \bigr) \left\lvert f + g \right\rvert ^{p-1}, \end{aligned}$$ + +we have + +$$\begin{aligned} \int \left\lvert f+g \right\rvert ^p & \leq \int \left\lvert f \right\rvert \cdot \left\lvert f+g \right\rvert ^{p-1} + \int \left\lvert g \right\rvert \cdot \left\lvert f+g \right\rvert ^{p-1} \\ & \leq \left( \int \left\lvert f \right\rvert ^p \right)^{1/p}\left( \int \left\lvert f+g \right\rvert ^{(p-1)q} \right)^{1/q} \\ & \quad + \left( \int \left\lvert q \right\rvert ^p \right)^{1/p}\left( \int \left\lvert f+g \right\rvert ^{(p-1)q} \right)^{1/q} \\ & = \left( \left\lVert f \right\rVert_p + \left\lVert g \right\rVert_p \right) \left( \int \left\lvert f+g \right\rvert ^p \right)^{1/q}. \end{aligned}$$ + +Since $\left\lVert f + g \right\rVert_p^p > 0$, we have + +$$\begin{aligned} \left\lVert f + g \right\rVert_p & = \left( \int \left\lvert f+g \right\rvert ^p \right)^{1/p} \\ & = \left( \int \left\lvert f+g \right\rvert ^p \right)^{1 - \frac{1}{q}} \\ & \leq \left\lVert f \right\rVert_p + \left\lVert g \right\rVert_p. \end{aligned}$$ + +**정의.** $f \sim g \iff f = g$ $\mu$-a.e. and define + +$$[f] = \left\lbrace g : f \sim g\right\rbrace.$$ + +We treat $[f]$ as an element in $\mathcal{L}^{p}(X, \mu)$, and write $f = [f]$. + +**참고.** + +1. We write $\left\lVert f \right\rVert_p = 0 \iff f = [0] = 0$ in the sense that $f = 0$ $\mu$-a.e. + +2. Now $\lVert \cdot \rVert_p$ is a **norm** in $\mathcal{L}^{p}(X, \mu)$ so $d(f, g) = \left\lVert f - g \right\rVert_p$ is a **metric** in $\mathcal{L}^{p}(X, \mu)$. + +## Completeness of $\mathcal{L}^p$ + +Now we have a *function space*, so we are interested in its *completeness*. + +**정의.** (Convergence in $\mathcal{L}^p$) Let $f, f_n \in \mathcal{L}^{p}(\mu)$. + +1. $f_n \rightarrow f$ in $\mathcal{L}^p(\mu) \iff \left\lVert f_n-f \right\rVert_p \rightarrow 0$ as $n \rightarrow\infty$. + +2. $\left( f_n \right)_{n=1}^\infty$ is a Cauchy sequence in $\mathcal{L}^{p}(\mu)$ if and only if + +> $\forall \epsilon > 0$, $\exists\,N > 0$ such that $n, m \geq N \implies \left\lVert f_n-f_m \right\rVert_p < \epsilon$. + +**도움정리.** Let $\left( g_n \right)$ be a sequence of measurable functions. Then, + +$$\left\lVert \sum_{n=1}^{\infty} \left\lvert g_n \right\rvert \right\rVert_p \leq \sum_{n=1}^{\infty} \left\lVert g_n \right\rVert_p.$$ + +Thus, if $\displaystyle\sum_{n=1}^{\infty} \left\lVert g_n \right\rVert_p < \infty$, then $\displaystyle\sum_{n=1}^{\infty} \left\lvert g_n \right\rvert < \infty$ $\mu$-a.e. So $\displaystyle\sum_{n=1}^{\infty} g_n < \infty$ $\mu$-a.e. + +**증명.** By monotone convergence theorem and Minkowski inequality, + +$$\begin{aligned} \left\lVert \sum_{n=1}^{\infty} \left\lvert g_n \right\rvert \right\rVert_p & = \lim_{m \rightarrow\infty} \left\lVert \sum_{n=1}^{m} \left\lvert g_n \right\rvert \right\rVert_p \\ & \leq \lim_{n \rightarrow\infty} \sum_{n=1}^{m} \left\lVert g_n \right\rVert_p \\ & = \sum_{n=1}^{\infty} \left\lVert g_n \right\rVert_p < \infty. \end{aligned}$$ + +Thus $\displaystyle\sum_{n=1}^{\infty} \left\lvert g_n \right\rvert < \infty$ $\mu$-a.e. and $\displaystyle\sum_{n=1}^{\infty} g_n < \infty$ $\mu$-a.e. by absolute convergence. + +**정리.** (Fischer) Suppose $\left( f_n \right)$ is a Cauchy sequence in $\mathcal{L}^{p}(\mu)$. Then there exists $f \in \mathcal{L}^{p}(\mu)$ such that $f_n \rightarrow f$ in $\mathcal{L}^{p}(\mu)$. + +**증명.** We construct $\left( n_k \right)$ by the following procedure. + +$\exists\,n_1 \in \mathbb{N}$ such that $\left\lVert f_m - f_{n_1} \right\rVert_p < \frac{1}{2}$ for all $m \geq n_1$. + +$\exists\,n_2 \in \mathbb{N}$ such that $\left\lVert f_m - f_{n_2} \right\rVert_p < \frac{1}{2^2}$ for all $m \geq n_2$. + +Then, $\exists\,1 \leq n_1 < n_2 < \cdots < n_k$ such that $\left\lVert f_m - f_{n_k} \right\rVert_p < \frac{1}{2^k}$ for $m \geq n_k$. + +Since $\displaystyle\left\lVert f_{n_{k+1}} - f_{n_k} \right\rVert_p < \frac{1}{2^k}$, we have + +$$\sum_{k=1}^{\infty} \left\lVert f_{n_{k+1}} - f_{n_k} \right\rVert_p < \infty.$$ + +By the above lemma, $\sum \left\lvert f_{n_{k+1}} - f_{n_k} \right\rvert$ and $\sum (f_{n_{k+1}} - f_{n_k})$ are finite. Let $f_{n_0} \equiv 0$. Then as $m \rightarrow\infty$, + +$$f_{n_{m+1}} = \sum_{k=0}^{m} \left( f_{n_{k+1}} - f_{n_k} \right)$$ + +converges $\mu$-a.e. Take $N \in \mathscr{F}$ with $\mu(N) = 0$ such that $f_{n_k}$ converges on $X \setminus N$. Let + +$$f(x) = \begin{cases} \displaystyle\lim_{k \rightarrow\infty} f_{n_k} (x) & (x \in X \setminus N) \\ 0 & (x\in N) \end{cases}$$ + +then $f$ is measurable. Using the convergence, + +$$\begin{aligned} \left\lVert f - f_{n_m} \right\rVert_p & = \left\lVert \sum_{k=m}^{\infty} \left( f_{n_{k+1}} (x) - f_{n_k}(x) \right) \right\rVert_p \\ & \leq \left\lVert \sum_{k=m}^{\infty} \left\lvert f_{n_{k+1}} (x) - f_{n_k}(x) \right\rvert \right\rVert_p \\ & \leq \sum_{k=m}^{\infty} \left\lVert f_{n_{k+1}} - f_{n_k} \right\rVert_p \leq 2^{-m} \end{aligned}$$ + +by the choice of $f_{n_k}$. So $f_{n_k} \rightarrow f$ in $\mathcal{L}^{p}(\mu)$. Also, $f = (f - f_{n_k}) + f_{n_k} \in \mathcal{L}^{p}(\mu)$. + +Let $\epsilon > 0$ be given. Since $\left( f_n \right)$ is a Cauchy sequence in $\mathcal{L}^{p}$, $\exists\,N \in \mathbb{N}$ such that for all $n, m \geq N$, $\left\lVert f_n - f_m \right\rVert < \frac{\epsilon}{2}$. Note that $n_k \geq k$, so $n_k \geq N$ if $k \geq N$. Choose $N_1 \geq N$ such that for $k \geq N$, $\left\lVert f - f_{n_k} \right\rVert_p < \frac{\epsilon}{2}$. Then for all $k \geq N_1$, + +$$\left\lVert f - f_k \right\rVert_p \leq \left\lVert f - f_{n_k} \right\rVert_p + \left\lVert f_{n_k} - f_k \right\rVert_p < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$ + +**참고.** $\mathcal{L}^{p}$ is a complete normed vector space, also known as **Banach space**. + +**정리.** $C[a, b]$ is a dense subset of $\mathcal{L}^{p}[a, b]$. That is, for every $f \in \mathcal{L}^{p}[a, b]$ and $\epsilon > 0$, $\exists\,g \in C[a, b]$ such that $\left\lVert f - g \right\rVert_p < \epsilon$. + +**증명.** Let $A$ be a closed subset in $[a, b]$, and consider a distance function + +$$d(x, A) = \inf_{y\in A} \left\lvert x - y \right\rvert , \quad x \in [a, b].$$ + +Since $d(x, A) \leq \left\lvert x - z \right\rvert \leq \left\lvert x - y \right\rvert + \left\lvert y - z \right\rvert$ for all $z \in A$, taking infimum over $z \in A$ gives $d(x, A) \leq \left\lvert x - y \right\rvert + d(y, A)$. So + +$$\left\lvert d(x, A) - d(y, A) \right\rvert \leq \left\lvert x - y \right\rvert ,$$ + +and $d(x, A)$ is continuous. If $d(x, A) = 0$, $\exists\,x_n \in A$ such that $\left\lvert x_n - x \right\rvert \rightarrow d(x, A) = 0$. Since $A$ is closed, $x \in A$. We know that $x \in A \iff d(x, A) = 0$. + +Let + +$$g_n(x) = \frac{1}{1 + n d(x, A)}.$$ + +$g_n$ is continuous, $g_n(x) = 1$ if and only if $x \in A$. Also for all $x \in [a, b] \setminus A$, $g_n(x) \rightarrow 0$ as $n \rightarrow\infty$. By Lebesgue’s dominated convergence theorem, + +$$\begin{aligned} \left\lVert g_n - \chi_A \right\rVert_p^p & = \int_A \left\lvert g_n - \chi_A \right\rvert ^p \,d{x} + \int_{[a, b]\setminus A} \left\lvert g_n - \chi_A \right\rvert ^p \,d{x} \\ & = 0 + \int_{[a, b]\setminus A} \left\lvert g_n \right\rvert ^p \,d{x} \rightarrow 0 \end{aligned}$$ + +since $\left\lvert g_n \right\rvert ^p \leq 1$. We have shown that characteristic functions of closed sets can be approximated by continuous functions in $\mathcal{L}^{p}[a, b]$. + +For every $A \in \mathfrak{M}(m)$, $\exists\,F_\text{closed} \subseteq A$ such that $m(A \setminus F) < \epsilon$. Since $\chi_A - \chi_F = \chi_{A \setminus F}$, + +$$\begin{aligned} \int \left\lvert \chi_A-\chi_F \right\rvert ^p \,d{x} & = \int \left\lvert \chi_{A\setminus F} \right\rvert ^p \,d{x} \\ & = \int_{A\setminus F} \,d{x} = m(A \setminus F) < \epsilon. \end{aligned}$$ + +Therefore, for every $A \in \mathfrak{M}$, $\exists\,g_n \in C[a, b]$ such that $\left\lVert g_n - \chi_A \right\rVert_p \rightarrow 0$ as $n \rightarrow\infty$. So characteristic functions of any measurable set can be approximated by continuous functions in $\mathcal{L}^{p}[a, b]$. + +Next, for any measurable simple function $f = \sum_{k=1}^{m}a_k \chi_{A_k}$, we can find $g_n^k \in C[a, b]$ so that + +$$\left\lVert f - \sum_{k=1}^{m} a_k g_n^k \right\rVert_p = \left\lVert \sum_{k=1}^{m}a_k \left( \chi_{A_k} - g_n^k \right) \right\rVert_p \rightarrow 0.$$ + +Next for $f \in \mathcal{L}^{p}$ and $f \geq 0$, there exist simple functions $f_n \geq 0$ such that $f_n \nearrow f$ in $\mathcal{L}^{p}$. Finally, any $f \in \mathcal{L}^{p}$ can be written as $f = f^+ - f^-$, which completes the proof. + +이러한 확장을 몇 번 해보면 굉장히 routine합니다. $\chi_F$ for closed $F$ $\rightarrow$ $\chi_A$ for measurable $A$ $\rightarrow$ measurable simple $f$ $\rightarrow$ $0\leq f \in \mathcal{L}^{p} \rightarrow$ $f \in \mathcal{L}^{p}$ 와 같은 순서로 확장합니다. + diff --git a/assets/img/posts/mt-09.png b/assets/img/posts/mt-09.png new file mode 100644 index 0000000000000000000000000000000000000000..7397b4d81501e764a5f6cc42b72a42378ad9c63c GIT binary patch literal 8054 zcmbWccT|&4@Gl%f6A(~9K#?NSJAxGHNJ~Od1VN-pq&KA#AVd_AUIK((6A%!P-kVZH z6!4*m^d>&iAyPuSe1GqG&$)lyd(PcIc4v2IW3^`NhcW7o6rrv-d#XMEm^w{DS=S>C^i9`pL-&IXO9rM7nqHo|Kf7nVH#} zH*ct^si&u>uV23&5fSn4-@nDh#ksk;-@kv;($d1=@V&jgzkmNaIy#z|m@qOjdU<*2 z=;*Yzwz9CW6c-oE%F5z!I5|1Fv9Ym$fB-QuvADQ64GoRl+*~XcyS%i_$;o+ea4*M1iBqW4HA}cE^3kwTtYHEy)jg5?qqNAf< zVP5g@@N92yfBW_=I5@bhtjyNdw!Xf;zrVkuqr=0)gP)&2BO~M8yLU}ZP5%D=Zf!`in#USO8;$m?-?%(*2Xz{Al6M@+!gq zhJxf3|uzxJF;5s%EC2DN(OnqIYXR zkU?6GQ&s%5>yu_w&cBLi*k`wOdEq;_2Jz3eNY}lSgx-elL#+>&_?M1xgN>Oq0ZoylV2um+IMGv zm9cD+-S)It^PTy@EbzgUYpFx@mHgvF{mll`#Q>zlVkPl5v+fhrxK+QuuoAU;y&Uf{ z@RaGH>fO(T(0&TsY&2}mIA1XRO<)e;yOO$GstnO-4)e12fR;j1<@?Bh0%9vuLGMS+ zC&S&h@6nL7=%JTe?qq9M?dBv-1CF=rR3+Kw9&d29`{9T-q^79Y%PK8m+Q(W=$a#f> zzx$HYJ8IV41YPgNySoNut0cCP2WR>3)J*K!5k{Pa57~$xUYL)=rV`Y}5af2+(2k?) zkJJc5!{-`J3Q@QMaBn1iIMlHJ!#Pk%KkewO*RS)A_^9)c-$}ip%ax>nnD98Df8X=g z1ULRK!De#XrkN?lWiDTBZ2#4=8j%l2vCXK4lCJ>jENP@z@0A5nefYRVeNLD#`S5Mz z-4xY}6pqb1%<6*4GK+l46{7&Axe|+Zg2vXoV3cY{u(>it6iyiiJ$Q93n@S5t>4r8$ zS`yY=G0N>c7IpK#=nlxRTR@H3N0-HHch_!8dK0nPcBGh<>(uPJCccNyvWJ;grh_1A zW!nMYiUlKx%ems6i*&k6B5l>=Jd=E-?Az}Z|Ko6dX*-#J^^|q^>koB4$yW-JAX3Ci zNrtQrf92ZcfXfmyx?q7FZ^_7|)n6PVqC`DQ4)vu}Px*f~sBQk4dwjgb{0kyuLf_76 zh+k^<=lp4(6Uk*WKvg*ct+Q$h~Z znGpoXtiDv|UHw{0`;$8L>dcwFURl>fOs`pUJ?(^aN7sTV!7QrWT-D;nyWhwj#fTid zTUw?pe2#LoG3O&THAPH7?moJ(#~e|)-er3E!0F5boGTE&-y1p0F|xtIG?{ML(7SeI zj_44FN-cInQ!4tN`GB#0SKs}MjP39#zij4}ZJq%1(AX-;!atA;?KqO@Yl5#AR-*cd zwgfZAXCHoWka&5Pl(UR9!3OC@JLMv3(GWS>vi*g$!Csr@YLP&FM(gGgoC|E2!*Mok zP%rm`{Q&g!An?1arCIAbh3IMb+w%CgIZk}^ zkWzcysqS7&lpu|nTdFw*2$}$XG8YnZ1+Zp4c2)M7RZs1f#M^KQkmr#$3s>F~CvEin zoRh7EOq9b>{L}HGhMHiCcjLDpI}NyG@^jhchMqR*XN1*)7o3$$bjB#(z{JYeacLic zO7X_1;29xvu;AX%LG6k2CwOHAtg+xE(byBQdi+HYHVn`yy(pm$R{u&cs?Q@F?7esr z-Q7rxWUVDu)0iz~u;WyJKvS(}!UcP&@s^}FbmpjA3`UWRdQC(cwvR*)7Kx^z|9?WU z|3Av)(qoi^*{892(TfhA?lFp=0mJ=g1t?bk2zVB5C(~Z2?`Qo$tfn7QoeS?H7&WUC zl%km=kgqP*T7ahHM14kbGc5svmU)0Te}J8%tY3kA(91h(2?MY(NtculnsZ%*^9^VU zI)u^)4C^)cX4A(}p6!>aRoZ6d(v6;x4I=v9616h99riZM#V8+AtEV$8ldmnXr_sqn zh*l!cA`&r5rlx!C>gcxDG=vcGKKDzv5vU+~lK z&w!>WYU|SOAN!>Z@(4J_#*Zde2K6|4A%NG$k{wU{&7?dod{pgjTds@Vc;DDRj2*2H zl&od2+!a}+L^Dw?-X%3lrEn=mD0A0m8<6X&kZ$A)g`LSV_l*BTu&}O2p15W35d5RI zYq`EKR*_G8l4ja@=|6z7JQ9^r1}HJB-*k4{Bc|pYVeJxH1jkT~-Uz}_Q05&?8y?wH zeCU&sdqfKl%D;aR2UJM|vaiCD(a*cETUc(3o922U&c_aP4NaO_%tYQA3bDZv^*XVU zuu@&fdUBqwF3eUOads(RD6WV`;`DBLpa(Ree9Wa0KH<0RRB~2G5KVa$B*jNiy|~+O z%Dlh`ruE?;0x|rFT8dJJwR1i9Z$BefOOoj18ydGdH+7Za3p?G4)!q4Gl)C9-f%)MC z*>%}}4Y-1K9@{9_KwhW$2GIL~+CW)Ab;S$tJ}HCju9aCSr|p`o3BliN{$T@1jTlOH zwZI(LS}) z*}69athYq0)H(}+m7x@guduv_tc#Ds2gHJnQ8UmO<{MlIROvM`fsIV25~q{)G@V__ z+6)WEL!V{azG>|^b?kZ*hH?h_QnY*)lEhb+fI2w{f+G&R^9AvUYr?1Iv*Y!MR$;46 z;pJKb^0I7j5_OHBw$s1E2a?0%(PP_WLfpeq1ZqgD ze@pJowtBNvG-qNsawYS#h&PtV&6*X(rl00h?+I<}XAUnYPKj-gHLO)T}`-B~>&)%tJDghp2qg&ooe`l;5Zf zL<9KeRng^9%16hSNnrifKYw@M4A zb!GThCZ3eNisYP|82`fPi^qSbF54c@h6?W6tl1kj$_=X_-Waq#Otbz8%Wausx81;s z5*jWmz>2G-z$3QE$_=sGAz9veh@Dfv)y5JY1(B=e@kk(>jHAs5jzM6#}oqE(-gp^OPGk<0lkT1 z3{!GtuJuXE@z&6@`u(;yLpNGvq#ZV%LJVmul2u*8*mmAw2O0I+8W4J`$mT%3WVKR( z>cGWvrJ@U+0=R3CKC_DCS+lOPoB#2lBwYve4wfPR;>M$#1J7JlCCKzP+d{LN3{gT4 zGM8zf2_B_`Tg=TZc$p69>}d)FJSx<32VxiW;>WX~>$&(wC*z`f(q3d}Es_>oN+nM;$fdGvV4s1yl& zrU?y+cok0=iU(_5EOwHzmb}KHSZ}pWd0E@!l6As&CJvszKQH%5or|W2+~xc_ zLfcQ>FQeyTpPX{ni1MrdaiR3-->aDApwPC=n*9rnYme^%vN;nO^ZuW0xj7W-Y z8==+NDl6dw_=IBlfZs+64M^Lxo|!c^p>hvpy#1 z(68%9ivF_ZaC%g4N!%))Y-3dK>}*JeWm+uP#BB7`+OKqTEIFm2Y5ZUOa&2cRw(L# z2uZ|%zN$r@9Ym1*x-Wrf&d~Z>FN^3ZiP6ZQfUEs!Qz~_^qEwfuI_$#F#)2ll%RuTW z$+pT}X&?nSW(_D&dI{*t&1Fd#lfE2m-gv$qv3&R)m};iNSjPVTMYp?SFogz#W0dJz zj7gDX*8H~&N!*I>36iW+9)!ID4wh)Ptk4d9WS^B!qo%qn2D^tlUdok!I9 zJ44ayp?C&ubI*e2sRF@$0yg$DXmCV&cQOT-QrsS8put*iLqDREgut30)ZuE??}%Wb z5jM4FBRio6-YL9kwUzE2#Ns1q<5r(kgIR9LnE~`Gnq;)oE4ENp!P9Z7`L(Fz*(zxe z%~kfh2mfvCllPAF47#xSB^A%a7iwFnZwe-$m9tf%l5`9NYGDSslnvj}Z!W-zMVY>)P1df(UG^ekYf5t)c1Bo(TU$ z{V$7nYO1t-7AApgN`A=ktwaF(y60L@`A{EmoA_hW?OyfGbE}N98F$V z)F6U0uc>|2fiAg_TB*JV*fLNpZZ;+%t}2HbWD$u(S+;zj@)6z8)e76B{_`<&?_qmy z90a3s{yZ{ymvnn^7|R56tMpM6+EE-!0Upr?ur(`yY$q6^`g>v<$I5pjMZ~dyKz4Yf zo=19(v`Uc|=$(b=6WCrma=o@>K4lF~DnQCUPYbD-^wsXQN`YeU6-+ALz#ZcaY+tA@ zWnS+rG4nd<-Ko`W9rmZeQdM>21ljbgox-0KpKUkxtbzU)OQm0k=ZE23u~OiI0z~Hf z8~7^QAJea-Lh(T!hkc!NACMtEX|^;F;S~f^+$q#N%%>PG(o6!+_|=0j+fz1!y~59 zGh?s3P1mPlr=yGBrJ@A2^!XIVZrIl4!|HdoAj{y-gu$GGoQG=mrNyR?>&R|{k%X8U zC-g!sbBUsxymA#{brKmSD0_KKlv98%7no^SG^%YomFt>+8n^Nk>y`7 z&~o%05Ty<1Pf`FcHmv)&)(04Rl!`CnRUNo25dUsD&P-FqPIQ0$t?e%?h3zm3@-0Bh zj_v!GXP6()eVjQP?>x%eexHSUz-`=DC~Bd$1Ed>; zJ$l)Faixv;GZ{4ch-e?HRBl9@kVeXK`e(eBzwJN17vxzlT3 zAOyFY96g@;&1vn=2$86qNZ5pxB)$uuUQhsKLfSIll^k;I)%qFMZswl~_uXqjt*>wM2&LsDI@ zex$Zioco0D(th>sxe){WL7^|Rq{?Fo&-c;ToIx_+pv@qmVgms&e&P?uJz{$CgfK>6 zEce1_UZX~-Aq>gXY^_F`BXO#-^L&K6F99Qiyt8j|8mM`8jMryNeia)hS?Ec=0FO$z z8O|Cm%q$eiV>`XpJz_*AbAL_1nnZvK-i6zUXLH7?&_pEPe0XTZB(HIgdxRQhHbame zZBvY%bDSh9f1Q?jYDMyuS-s_w`#t+o-W++aaCv$FxULcQsFXAY>`fF~+pJ_n7ZvZP9gL*BAm}4n}vPle3aF6QNgci1IPkjJjDbo5l&8d$_3!nM9xHW(h7e4pN~k~Ep5T92 ziStraFEsZGu zkr9c@$$%fQwOgQs#K|7#_9N-O8err!?{SDgB;qakt=2N6?&(g((H3SA>IehZoHuEU zCREj@^u{86nZpF<2P!ge(0N-PKE(anY!LWWMf;+1B&v!>>N56En%IEb8a^T^;f~wB zVm-^=OZwnRo^^?~$B2Bix;G~tl6Ji}^qjY=@$!EWU(wU0B>976W&X#t)4v)# zheUQo!BD

5rF@kK;L&CuC6u64T@C-^c2tg=ZbQOU22xLsS1dlcF@O@AcQ%_5*w@ z6jlDxj1<*_04#M5y=1Y+F{kXF>bTWQY%W!<&G}mYYPx;UX{H8LY2i)j z?#3Z`+7WF9?>zm3cQV(8iR&V2(Tjuu_iYr}uR3hI37KSGRs{6N9@@*Nd=;c)lC)By zsO)I+{_IeTJ#)}+@QhqGZp2G7C0qjYX#)ylRamAI{D8R_@J!_NOqIWF`8C$-yVHar z$qU*1X-M(xGz8x4(J9={G2##4*8g07fcE&b*yV^Hpx@r~N0JOlNxqrtd#Q4HLwXay zJmG$=tKjJz(u`VOVBS5VZcc3rtwS0EJ@n^b=UU)nqZG(p)22oNG8!ybTxY*(ft3=7 z7_An&iyJ6OT{t}@|K^D2e)8g;-|6}M1q2nx!4bpN^q*Tc-G^^{{OD(gX42ZRXXk6o zKpjIsi*$(KY3NTuJWgWXWWrgxoRoId!qq2n^64jRu2uDx72_wck$9FUIB?Q3$}Mrz z&kvBVG}2T1(p6IU!!D>QO6^W3U)}1tsU-VOdfI3+@5F@x1H~n+_B&xE(kL_4;N>0i z1ZxJO4JFgkPcWVArst>lu=Db4V!3A^n6Ila$xr%-xjn-^5`6UV=2zjS%536y*Fca& zm$iA9^wEM--D9C^c=#hjf5-;j(|Q2G7_cy!3KlLug}~!k|H^W6{eKgo)&Bkl&g2i- z`-aFfF?jf`1i5ha{CAkvl6RNPMUC-!saxmH8RiaoU+#hWl77vr{sa8y(K0QWGsA>v z8MgNEAdO=!Psq={TBLc@92VW^^Y4v>ilTa+$aQODE68SypK`BVJf2&^N+ll=FEB6T zBCz2*KF2lk-QjOC^tGLX4ru`xV{RsnUQ#U+`xFCi*%jWQq)mx802px_)m-JKGH|B znZi?tYmnIWd&C7w)*Crw^MEO9J<)*y^MkDx#}55?=Xdn_0oA%P7=th~`T}TksRqG3 zW5C|{qu?`TPWj6`MW3wX7G8qq9SH;_n!{<9jfpH?+g6Nc#X&=nWiv`M6>Uvv8%wz{ z5lz0GS~m9AY1dM^_8c02p{^15o=@2+I*hing*+Cx{>34id@9cAF#js9Le?1sd&W%5 zo7#4HL%qbBp&u1%8;N%Izztjl*AuXWymD+;XU)ceA2J)pmth9E5omF|Jh(P|ZxI-~EqYoS-bv&<+Vp}j z80l$FPhnJ;YR5}*XlSR|JVTS>E*$j*p8G2kDC`sOhF8nB)!KaztbZUOpO(@f~Xnq&`m&2oD@%nc2XQ3ZcNK~l5e(0B< zq#X1`;M^9^)+*f|El({SkyINpK;3Vr$V)2{FE~T42|1%># zkv{VO<`jY}TyuaTWByB}{_oX(w2H!&|4HWVhPqRj{+|j#MS+Lxg7pgV+*b*D?f;$u aw!O{Qn6ehG()i{-UYNF_R)wZ**#81@!_SHU literal 0 HcmV?d00001