--- share: true toc: true math: true categories: - Mathematics - Coq path: _posts/mathematics/coq tags: - math - coq - proof-verification title: Rules of Inference with Coq date: 2023-07-08 github_title: 2023-07-08-rules-of-inference --- This is a list of proofs with Coq, for each rule of inference stated in [List of Rules of Inference (Wikipedia)](https://en.wikipedia.org/wiki/List_of_rules_of_inference) Some rules that need [the law of excluded middle](https://en.wikipedia.org/wiki/Law_of_excluded_middle) are at the end of the section. ## Rules for Negation ```coq Lemma reductio_ad_absurdum : forall P Q : Prop, (P -> Q) -> (P -> ~Q) -> ~P. Proof. intros. intros HP. apply H0 in HP as HNQ. apply H in HP as HQ. contradiction. Qed. Lemma ex_contradictione_quodlibet : forall P Q : Prop, P -> ~P -> Q. Proof. intros. contradiction. Qed. Lemma double_negation_introduction : forall P : Prop, P -> ~~P. Proof. auto. Qed. ``` ## Rules for Conditionals ```coq Lemma modus_ponens : forall P Q : Prop, (P -> Q) -> P -> Q. Proof. auto. Qed. Lemma modus_tollens : forall P Q : Prop, (P -> Q) -> ~Q -> ~P. Proof. auto. Qed. ``` ## Rules for Conjunctions ```coq Lemma conjuction_introduction : forall P Q : Prop, P -> Q -> P /\ Q. Proof. auto. Qed. Lemma conjunction_elimination_left : forall P Q : Prop, P /\ Q -> P. Proof. intros P Q [HP HQ]; auto. Qed. Lemma conjunction_elimination_right : forall P Q : Prop, P /\ Q -> Q. Proof. intros P Q [HP HQ]; auto. Qed. Lemma conjunction_commutative : forall P Q : Prop, P /\ Q -> Q /\ P. Proof. intros. destruct H; split; auto. Qed. Lemma conjunction_associative : forall P Q R : Prop, (P /\ Q) /\ R -> P /\ (Q /\ R). Proof. intros. destruct H as [H H1]; destruct H; split; auto. Qed. ``` ## Rules for Disjunctions ```coq Lemma disjunction_introduction_left : forall P Q : Prop, P -> P \/ Q. Proof. auto. Qed. Lemma disjunction_introduction_right : forall P Q : Prop, Q -> P \/ Q. Proof. auto. Qed. Lemma disjunction_elimination : forall P Q R : Prop, (P -> R) -> (Q -> R) -> (P \/ Q) -> R. Proof. intros. destruct H1; auto. Qed. Lemma disjunctive_syllogism_left : forall P Q : Prop, (P \/ Q) -> ~P -> Q. Proof. intros. destruct H; auto. contradiction. Qed. Lemma disjunctive_syllogism_right : forall P Q : Prop, (P \/ Q) -> ~Q -> P. Proof. intros. destruct H; auto. contradiction. Qed. Lemma constructive_dilemma : forall P Q R S : Prop, (P -> R) -> (Q -> S) -> (P \/ Q) -> (R \/ S). Proof. intros. destruct H1; auto. Qed. Lemma disjunction_commutative : forall P Q : Prop, P \/ Q -> Q \/ P. Proof. intros. destruct H; auto. Qed. Lemma disunction_associative : forall P Q R : Prop, (P \/ Q) \/ R -> P \/ (Q \/ R). Proof. intros. destruct H as [H | H]; auto. destruct H; auto. Qed. ``` ## Rules for Biconditionals ```coq Lemma biconditional_introduction : forall P Q : Prop, (P -> Q) -> (Q -> P) -> (P <-> Q). Proof. split; auto. Qed. Lemma biconditional_elimination_left_mp : forall P Q : Prop, (P <-> Q) -> P -> Q. Proof. intros. destruct H; auto. Qed. Lemma biconditional_elimination_right_mp : forall P Q : Prop, (P <-> Q) -> Q -> P. Proof. intros. destruct H; auto. Qed. Lemma biconditional_elimination_left_mt : forall P Q : Prop, (P <-> Q) -> ~P -> ~Q. Proof. intros. destruct H; auto. Qed. Lemma biconditional_elimination_right_mt : forall P Q : Prop, (P <-> Q) -> ~Q -> ~P. Proof. intros. destruct H; auto. Qed. Lemma biconditional_elimination_disjunction : forall P Q : Prop, (P <-> Q) -> (P \/ Q) -> (P /\ Q). Proof. intros. destruct H, H0; auto. Qed. Lemma biconditional_elimination_disjunction_not : forall P Q : Prop, (P <-> Q) -> (~P \/ ~Q) -> (~P /\ ~Q). Proof. intros. destruct H, H0; auto. Qed. ``` ## Other Rules ```coq Lemma exportation : forall P Q R : Prop, (P /\ Q) -> R <-> (P -> Q -> R). Proof. split; auto. destruct H; auto. Qed. Lemma distributive_disjunction : forall P Q R : Prop, P \/ (Q /\ R) <-> (P \/ Q) /\ (P \/ R). Proof. split; intros. - destruct H as [H | [H1 H2]]; split; auto. - destruct H as [H1 H2]; destruct H1, H2; auto. Qed. Lemma distributive_conjunction : forall P Q R : Prop, P /\ (Q \/ R) <-> (P /\ Q) \/ (P /\ R). Proof. split; intros. - destruct H as [H [H1 | H1]]; auto. - destruct H as [[H1 H2] | [H1 H2]]; auto. Qed. Lemma material_implication_converse : forall P Q : Prop, (~P \/ Q) -> (P -> Q). Proof. intros. destruct H; auto. contradiction. Qed. Lemma resolution : forall P Q R : Prop, (P \/ Q) -> (~P \/ R) -> (Q \/ R). Proof. intros. destruct H, H0; auto. contradiction. Qed. ``` ## Rules that require Excluded Middle We declare the law of excluded middle as an axiom. ```coq Axiom excluded_middle : forall P : Prop, P \/ ~P. Lemma double_negation_elimination : forall P : Prop, ~~P -> P. Proof. intros. destruct (excluded_middle P); auto. contradiction. Qed. Lemma material_implication : forall P Q : Prop, (P -> Q) -> (~P \/ Q). Proof. intros. destruct (excluded_middle P); auto. Qed. Lemma reductio_ad_absurdum_neg : forall P Q : Prop, (~P -> Q) -> (~P -> ~Q) -> P. Proof. intros. destruct (excluded_middle P); auto. apply H in H1 as HQ. apply H0 in H1 as HNQ. contradiction. Qed. ``` --- I was supposed to be reading the [source](https://github.com/snu-sf/promising-seq-coq) for the paper [Sequential Reasoning for Optimizing Compilers Under Weak Memory Concurrency](https://dl.acm.org/doi/abs/10.1145/3519939.3523718) but I got carried away...