mirror of
https://github.com/calofmijuck/blog.git
synced 2025-12-06 14:53:50 +00:00
[PUBLISHER] upload files #164
* PUSH NOTE : 1. OTP, Stream Ciphers and PRGs.md * DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-07-otp-stream-cipher-prgs/2023-09-07-otp-stream-cipher-prgs.md
This commit is contained in:
@@ -5,6 +5,7 @@ math: true
|
|||||||
categories:
|
categories:
|
||||||
- Lecture Notes
|
- Lecture Notes
|
||||||
- Modern Cryptography
|
- Modern Cryptography
|
||||||
|
path: _posts/lecture-notes/modern-cryptography
|
||||||
tags:
|
tags:
|
||||||
- lecture-note
|
- lecture-note
|
||||||
- cryptography
|
- cryptography
|
||||||
@@ -12,7 +13,6 @@ tags:
|
|||||||
title: 1. One-Time Pad, Stream Ciphers and PRGs
|
title: 1. One-Time Pad, Stream Ciphers and PRGs
|
||||||
date: 2023-09-07
|
date: 2023-09-07
|
||||||
github_title: 2023-09-07-otp-stream-cipher-prgs
|
github_title: 2023-09-07-otp-stream-cipher-prgs
|
||||||
path: _posts/lecture-notes/modern-cryptography/2023-09-07-otp-stream-cipher-prgs
|
|
||||||
image:
|
image:
|
||||||
path: assets/img/posts/lecture-notes/modern-cryptography/mc-01-ss.png
|
path: assets/img/posts/lecture-notes/modern-cryptography/mc-01-ss.png
|
||||||
attachment:
|
attachment:
|
||||||
@@ -293,7 +293,7 @@ We can deduce that if a PRG is predictable, then it is insecure.
|
|||||||
|
|
||||||
*Proof*. Let $\mathcal{A}$ be an efficient adversary (next bit predictor) that predicts $G$. Suppose that $i$ is the index chosen by $\mathcal{A}$. With $\mathcal{A}$, we construct a statistical test $\mathcal{B}$ such that $\mathrm{Adv}_\mathrm{PRG}[\mathcal{B}, G]$ is non-negligible.
|
*Proof*. Let $\mathcal{A}$ be an efficient adversary (next bit predictor) that predicts $G$. Suppose that $i$ is the index chosen by $\mathcal{A}$. With $\mathcal{A}$, we construct a statistical test $\mathcal{B}$ such that $\mathrm{Adv}_\mathrm{PRG}[\mathcal{B}, G]$ is non-negligible.
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
1. The challenger PRG will send a bit string $x$ to $\mathcal{B}$.
|
1. The challenger PRG will send a bit string $x$ to $\mathcal{B}$.
|
||||||
- In experiment $0$, PRG gives pseudorandom string $G(k)$.
|
- In experiment $0$, PRG gives pseudorandom string $G(k)$.
|
||||||
@@ -319,7 +319,7 @@ The theorem implies that if next bit predictors cannot distinguish $G$ from true
|
|||||||
|
|
||||||
To motivate the definition of semantic security, we consider a **security game framework** (attack game) between a **challenger** (ex. the creator of some cryptographic scheme) and an **adversary** $\mathcal{A}$ (ex. attacker of the scheme).
|
To motivate the definition of semantic security, we consider a **security game framework** (attack game) between a **challenger** (ex. the creator of some cryptographic scheme) and an **adversary** $\mathcal{A}$ (ex. attacker of the scheme).
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
> **Definition.** Let $\mathcal{E} = (G, E, D)$ be a cipher defined over $(\mathcal{K}, \mathcal{M}, \mathcal{C})$. For a given adversary $\mathcal{A}$, we define two experiments $0$ and $1$. For $b \in \lbrace 0, 1 \rbrace$, define experiment $b$ as follows:
|
> **Definition.** Let $\mathcal{E} = (G, E, D)$ be a cipher defined over $(\mathcal{K}, \mathcal{M}, \mathcal{C})$. For a given adversary $\mathcal{A}$, we define two experiments $0$ and $1$. For $b \in \lbrace 0, 1 \rbrace$, define experiment $b$ as follows:
|
||||||
>
|
>
|
||||||
Reference in New Issue
Block a user