feat: breaking change (unstable) (#198)

* [PUBLISHER] upload files #175

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-19-symmetric-key-encryption.md

* [PUBLISHER] upload files #177

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-19-symmetric-key-encryptio.md

* [PUBLISHER] upload files #178

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md

* [PUBLISHER] upload files #179

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md

* [PUBLISHER] upload files #180

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md

* [PUBLISHER] upload files #181

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md

* [PUBLISHER] upload files #182

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* [PUBLISHER] upload files #183

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md

* [PUBLISHER] upload files #184

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md

* [PUBLISHER] upload files #185

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md

* [PUBLISHER] upload files #186

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* [PUBLISHER] upload files #187

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 14. Secure Multiparty Computation.md

* DELETE FILE : _posts/Lecture Notes/Modern Cryptography/2023-09-19-symmetric-key-encryption.md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md

* [PUBLISHER] upload files #188

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 14. Secure Multiparty Computation.md

* DELETE FILE : _posts/Lecture Notes/Modern Cryptography/2023-09-19-symmetric-key-encryption.md

* chore: remove files

* [PUBLISHER] upload files #197

* PUSH NOTE : 수학 공부에 대한 고찰.md

* PUSH NOTE : 09. Lp Functions.md

* PUSH ATTACHMENT : mt-09.png

* PUSH NOTE : 08. Comparison with the Riemann Integral.md

* PUSH ATTACHMENT : mt-08.png

* PUSH NOTE : 04. Measurable Functions.md

* PUSH ATTACHMENT : mt-04.png

* PUSH NOTE : 06. Convergence Theorems.md

* PUSH ATTACHMENT : mt-06.png

* PUSH NOTE : 07. Dominated Convergence Theorem.md

* PUSH ATTACHMENT : mt-07.png

* PUSH NOTE : 05. Lebesgue Integration.md

* PUSH ATTACHMENT : mt-05.png

* PUSH NOTE : 03. Measure Spaces.md

* PUSH ATTACHMENT : mt-03.png

* PUSH NOTE : 02. Construction of Measure.md

* PUSH ATTACHMENT : mt-02.png

* PUSH NOTE : 01. Algebra of Sets and Set Functions.md

* PUSH ATTACHMENT : mt-01.png

* PUSH NOTE : Rules of Inference with Coq.md

* PUSH NOTE : 블로그 이주 이야기.md

* PUSH NOTE : Secure IAM on AWS with Multi-Account Strategy.md

* PUSH ATTACHMENT : separation-by-product.png

* PUSH NOTE : You and Your Research, Richard Hamming.md

* PUSH NOTE : 10. Digital Signatures.md

* PUSH ATTACHMENT : mc-10-dsig-security.png

* PUSH ATTACHMENT : mc-10-schnorr-identification.png

* PUSH NOTE : 9. Public Key Encryption.md

* PUSH ATTACHMENT : mc-09-ss-pke.png

* PUSH NOTE : 8. Number Theory.md

* PUSH NOTE : 7. Key Exchange.md

* PUSH ATTACHMENT : mc-07-dhke.png

* PUSH ATTACHMENT : mc-07-dhke-mitm.png

* PUSH ATTACHMENT : mc-07-merkle-puzzles.png

* PUSH NOTE : 6. Hash Functions.md

* PUSH ATTACHMENT : mc-06-merkle-damgard.png

* PUSH ATTACHMENT : mc-06-davies-meyer.png

* PUSH ATTACHMENT : mc-06-hmac.png

* PUSH NOTE : 5. CCA-Security and Authenticated Encryption.md

* PUSH ATTACHMENT : mc-05-ci.png

* PUSH ATTACHMENT : mc-05-etm-mte.png

* PUSH NOTE : 1. OTP, Stream Ciphers and PRGs.md

* PUSH ATTACHMENT : mc-01-prg-game.png

* PUSH ATTACHMENT : mc-01-ss.png

* PUSH NOTE : 4. Message Authentication Codes.md

* PUSH ATTACHMENT : mc-04-mac.png

* PUSH ATTACHMENT : mc-04-mac-security.png

* PUSH ATTACHMENT : mc-04-cbc-mac.png

* PUSH ATTACHMENT : mc-04-ecbc-mac.png

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH ATTACHMENT : is-03-ecb-encryption.png

* PUSH ATTACHMENT : is-03-cbc-encryption.png

* PUSH ATTACHMENT : is-03-ctr-encryption.png

* PUSH NOTE : 2. PRFs, PRPs and Block Ciphers.md

* PUSH ATTACHMENT : mc-02-block-cipher.png

* PUSH ATTACHMENT : mc-02-feistel-network.png

* PUSH ATTACHMENT : mc-02-des-round.png

* PUSH ATTACHMENT : mc-02-DES.png

* PUSH ATTACHMENT : mc-02-aes-128.png

* PUSH ATTACHMENT : mc-02-2des-mitm.png

* PUSH NOTE : 18. Bootstrapping & CKKS.md

* PUSH NOTE : 17. BGV Scheme.md

* PUSH NOTE : 16. The GMW Protocol.md

* PUSH ATTACHMENT : mc-16-beaver-triple.png

* PUSH NOTE : 15. Garbled Circuits.md

* PUSH NOTE : 14. Secure Multiparty Computation.md

* PUSH NOTE : 13. Sigma Protocols.md

* PUSH ATTACHMENT : mc-13-sigma-protocol.png

* PUSH ATTACHMENT : mc-13-okamoto.png

* PUSH ATTACHMENT : mc-13-chaum-pedersen.png

* PUSH ATTACHMENT : mc-13-gq-protocol.png

* PUSH NOTE : 12. Zero-Knowledge Proofs (Introduction).md

* PUSH ATTACHMENT : mc-12-id-protocol.png

* PUSH NOTE : 11. Advanced Topics.md

* PUSH NOTE : 0. Introduction.md

* PUSH NOTE : 02. Symmetric Key Cryptography (1).md

* PUSH NOTE : 09. Transport Layer Security.md

* PUSH ATTACHMENT : is-09-tls-handshake.png

* PUSH NOTE : 08. Public Key Infrastructure.md

* PUSH ATTACHMENT : is-08-certificate-validation.png

* PUSH NOTE : 07. Public Key Cryptography.md

* PUSH NOTE : 06. RSA and ElGamal Encryption.md

* PUSH NOTE : 05. Modular Arithmetic (2).md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* PUSH ATTACHMENT : is-03-feistel-function.png

* PUSH ATTACHMENT : is-03-cfb-encryption.png

* PUSH ATTACHMENT : is-03-ofb-encryption.png

* PUSH NOTE : 04. Modular Arithmetic (1).md

* PUSH NOTE : 01. Security Introduction.md

* PUSH ATTACHMENT : is-01-cryptosystem.png

* PUSH NOTE : Search Time in Hash Tables.md

* PUSH NOTE : 랜덤 PS일지 (1).md

* chore: rearrange articles

* feat: fix paths

* feat: fix all broken links

* feat: title font to palatino
This commit is contained in:
2024-11-13 14:28:45 +09:00
committed by GitHub
parent c9f7af5f3d
commit 23aeb29ad8
78 changed files with 2105 additions and 2030 deletions

View File

@@ -0,0 +1,216 @@
---
share: true
toc: true
math: true
categories:
- Mathematics
- Measure Theory
path: _posts/mathematics/measure-theory
tags:
- math
- analysis
- measure-theory
title: 09. $\mathcal{L}^p$ Functions
date: 2023-07-31
github_title: 2023-07-31-Lp-functions
image:
path: /assets/img/posts/mathematics/measure-theory/mt-09.png
attachment:
folder: assets/img/posts/mathematics/measure-theory
---
![mt-09.png](../../../assets/img/posts/mathematics/measure-theory/mt-09.png){: .w-50}
## Integration on Complex Valued Function
Let $(X, \mathscr{F}, \mu)$ be a measure space, and $E \in \mathscr{F}$.
**정의.**
1. A complex valued function $f = u + iv$, (where $u, v$ are real functions) is measurable if $u$ and $v$ are both measurable.
2. For a complex function $f$,
$$f \in \mathcal{L}^{1}(E, \mu) \iff \int _ E \left\lvert f \right\rvert \,d{\mu} < \infty \iff u, v \in \mathcal{L}^{1}(E, \mu).$$
3. If $f = u + iv \in \mathcal{L}^{1}(E, \mu)$, we define
$$\int _ E f \,d{\mu} = \int _ E u \,d{\mu} + i\int _ E v \,d{\mu}.$$
**참고.**
1. Linearity also holds for complex valued functions. For $f _ 1, f _ 2 \in \mathcal{L}^{1}(\mu)$ and $\alpha \in \mathbb{C}$,
$$\int _ E \left( f _ 1 + \alpha f _ 2 \right) \,d{\mu} = \int _ E f _ 1 \,d{\mu} + \alpha \int _ E f _ 2 \,d{\mu}.$$
2. Choose $c \in \mathbb{C}$ and $\left\lvert c \right\rvert = 1$ such that $\displaystyle c \int _ E f \,d{\mu} \geq 0$. This is possible since multiplying by $c$ is equivalent to a rotation.
Now set $cf = u + vi$ where $u, v$ are real functions and the integral of $v$ over $E$ is $0$. Then,
$$\begin{aligned} \left\lvert \int _ E f \,d{\mu} \right\rvert & = c \int _ E f\,d{\mu} = \int _ E u \,d{\mu} \\ & \leq \int _ E (u^2+v^2)^{1/2} \,d{\mu} \\ & = \int _ E \left\lvert cf \right\rvert \,d{\mu} = \int _ E \left\lvert f \right\rvert \,d{\mu}. \end{aligned}$$
## Functions of Class $\mathcal{L}^{p}$
### $\mathcal{L}^p$ Space
Assume that $(X, \mathscr{F}, \mu)$ is given and $X = E$.
**정의.** ($\mathcal{L}^{p}$) A complex function $f$ is in $\mathcal{L}^{p}(\mu)$ if $f$ is measurable and $\displaystyle\int _ E \left\lvert f \right\rvert ^p \,d{\mu} < \infty$.
**정의.** ($\mathcal{L}^{p}$-norm) **$\mathcal{L}^{p}$-norm** of $f$ is defined as
$$\left\lVert f \right\rVert _ p = \left[\int _ E \left\lvert f \right\rvert ^p \,d{\mu} \right]^{1/p}.$$
### Inequalities
**정리.** (Young Inequality) For $a, b \geq 0$, if $p > 1$ and $1/p + 1/q = 1$, then
$$ab \leq \frac{a^p}{p} + \frac{b^q}{q}.$$
**증명.** From $1/p + 1/q = 1$, $p - 1 = \frac{1}{q - 1}$. The graph $y = x^{p - 1}$ is equal to the graph of $x = y^{q - 1}$. Sketch the graph on the $xy$-plane and consider the area bounded by $x = 0$, $x = a$, $y = 0$, $y = b$. Then we directly see that
$$\int _ 0^a x^{p-1} \,d{x} + \int _ 0^b y^{q-1} \,d{y} \geq ab,$$
with equality when $a^p = b^q$. Evaluating the integral gives the desired inequality.
**참고.** For $\mathscr{F}$-measurable $f, g$ on $X$,
$$\left\lvert fg \right\rvert \leq \frac{\left\lvert f \right\rvert ^p}{p} + \frac{\left\lvert g \right\rvert ^q}{q} \implies \left\lVert fg \right\rVert _ 1 \leq \frac{\left\lVert f \right\rVert _ p^p}{p} + \frac{\left\lVert g \right\rVert _ q^q}{q}$$
by Young inequality. In particular, if $\left\lVert f \right\rVert _ p = \left\lVert g \right\rVert _ q = 1$, then $\left\lVert fg \right\rVert _ 1 \leq 1$.
**정리.** (Hölder Inequality) Let $1 < p < \infty$ and $\displaystyle\frac{1}{p} + \frac{1}{q} = 1$. If $f, g$ are measurable,
$$\left\lVert fg \right\rVert _ 1 \leq \left\lVert f \right\rVert _ p \left\lVert g \right\rVert _ q.$$
So if $f \in \mathcal{L}^{p}(\mu)$ and $g \in \mathcal{L}^{q}(\mu)$, then $fg \in \mathcal{L}^{1}(\mu)$.
**증명.** If $\left\lVert f \right\rVert _ p = 0$ or $\left\lVert g \right\rVert _ q = 0$ then $f = 0$ a.e. or $g = 0$ a.e. So $fg = 0$ a.e. and $\left\lVert fg \right\rVert _ 1 = 0$.
Now suppose that $\left\lVert f \right\rVert _ p > 0$ and $\left\lVert g \right\rVert _ q > 0$. By the remark above, the result directly follows from
$$\left\lVert \frac{f}{\left\lVert f \right\rVert _ p} \cdot \frac{g}{\left\lVert g \right\rVert _ q} \right\rVert _ 1 \leq 1.$$
**정리.** (Minkowski Inequality) For $1 \leq p < \infty$, if $f, g$ are measurable, then
$$\left\lVert f + g \right\rVert _ p \leq \left\lVert f \right\rVert _ p + \left\lVert g \right\rVert _ p.$$
**증명.** If $f, g \notin \mathcal{L}^{p}$, the right hand side is $\infty$ and we are done. For $p = 1$, the equality is equivalent to the triangle inequality. Also if $\left\lVert f + g \right\rVert _ p = 0$, the inequality holds trivially. We suppose that $p > 1$, $f, g \in \mathcal{L}^p$ and $\left\lVert f+g \right\rVert _ p > 0$.
Let $q = \frac{p}{p-1}$. Since
$$\begin{aligned} \left\lvert f + g \right\rvert ^p & = \left\lvert f + g \right\rvert \cdot \left\lvert f + g \right\rvert ^{p - 1} \\ & \leq \bigl(\left\lvert f \right\rvert + \left\lvert g \right\rvert \bigr) \left\lvert f + g \right\rvert ^{p-1}, \end{aligned}$$
we have
$$\begin{aligned} \int \left\lvert f+g \right\rvert ^p & \leq \int \left\lvert f \right\rvert \cdot \left\lvert f+g \right\rvert ^{p-1} + \int \left\lvert g \right\rvert \cdot \left\lvert f+g \right\rvert ^{p-1} \\ & \leq \left( \int \left\lvert f \right\rvert ^p \right)^{1/p}\left( \int \left\lvert f+g \right\rvert ^{(p-1)q} \right)^{1/q} \\ & \quad + \left( \int \left\lvert q \right\rvert ^p \right)^{1/p}\left( \int \left\lvert f+g \right\rvert ^{(p-1)q} \right)^{1/q} \\ & = \left( \left\lVert f \right\rVert _ p + \left\lVert g \right\rVert _ p \right) \left( \int \left\lvert f+g \right\rvert ^p \right)^{1/q}. \end{aligned}$$
Since $\left\lVert f + g \right\rVert _ p^p > 0$, we have
$$\begin{aligned} \left\lVert f + g \right\rVert _ p & = \left( \int \left\lvert f+g \right\rvert ^p \right)^{1/p} \\ & = \left( \int \left\lvert f+g \right\rvert ^p \right)^{1 - \frac{1}{q}} \\ & \leq \left\lVert f \right\rVert _ p + \left\lVert g \right\rVert _ p. \end{aligned}$$
**정의.** $f \sim g \iff f = g$ $\mu$-a.e. and define
$$[f] = \left\lbrace g : f \sim g\right\rbrace.$$
We treat $[f]$ as an element in $\mathcal{L}^{p}(X, \mu)$, and write $f = [f]$.
**참고.**
1. We write $\left\lVert f \right\rVert _ p = 0 \iff f = [0] = 0$ in the sense that $f = 0$ $\mu$-a.e.
2. Now $\lVert \cdot \rVert _ p$ is a **norm** in $\mathcal{L}^{p}(X, \mu)$ so $d(f, g) = \left\lVert f - g \right\rVert _ p$ is a **metric** in $\mathcal{L}^{p}(X, \mu)$.
## Completeness of $\mathcal{L}^p$
Now we have a *function space*, so we are interested in its *completeness*.
**정의.** (Convergence in $\mathcal{L}^p$) Let $f, f _ n \in \mathcal{L}^{p}(\mu)$.
1. $f _ n \rightarrow f$ in $\mathcal{L}^p(\mu) \iff \left\lVert f _ n-f \right\rVert _ p \rightarrow 0$ as $n \rightarrow\infty$.
2. $\left( f _ n \right) _ {n=1}^\infty$ is a Cauchy sequence in $\mathcal{L}^{p}(\mu)$ if and only if
> $\forall \epsilon > 0$, $\exists\,N > 0$ such that $n, m \geq N \implies \left\lVert f _ n-f _ m \right\rVert _ p < \epsilon$.
**도움정리.** Let $\left( g _ n \right)$ be a sequence of measurable functions. Then,
$$\left\lVert \sum _ {n=1}^{\infty} \left\lvert g _ n \right\rvert \right\rVert _ p \leq \sum _ {n=1}^{\infty} \left\lVert g _ n \right\rVert _ p.$$
Thus, if $\displaystyle\sum _ {n=1}^{\infty} \left\lVert g _ n \right\rVert _ p < \infty$, then $\displaystyle\sum _ {n=1}^{\infty} \left\lvert g _ n \right\rvert < \infty$ $\mu$-a.e. So $\displaystyle\sum _ {n=1}^{\infty} g _ n < \infty$ $\mu$-a.e.
**증명.** By monotone convergence theorem and Minkowski inequality,
$$\begin{aligned} \left\lVert \sum _ {n=1}^{\infty} \left\lvert g _ n \right\rvert \right\rVert _ p & = \lim _ {m \rightarrow\infty} \left\lVert \sum _ {n=1}^{m} \left\lvert g _ n \right\rvert \right\rVert _ p \\ & \leq \lim _ {n \rightarrow\infty} \sum _ {n=1}^{m} \left\lVert g _ n \right\rVert _ p \\ & = \sum _ {n=1}^{\infty} \left\lVert g _ n \right\rVert _ p < \infty. \end{aligned}$$
Thus $\displaystyle\sum _ {n=1}^{\infty} \left\lvert g _ n \right\rvert < \infty$ $\mu$-a.e. and $\displaystyle\sum _ {n=1}^{\infty} g _ n < \infty$ $\mu$-a.e. by absolute convergence.
**정리.** (Fischer) Suppose $\left( f _ n \right)$ is a Cauchy sequence in $\mathcal{L}^{p}(\mu)$. Then there exists $f \in \mathcal{L}^{p}(\mu)$ such that $f _ n \rightarrow f$ in $\mathcal{L}^{p}(\mu)$.
**증명.** We construct $\left( n _ k \right)$ by the following procedure.
$\exists\,n _ 1 \in \mathbb{N}$ such that $\left\lVert f _ m - f _ {n _ 1} \right\rVert _ p < \frac{1}{2}$ for all $m \geq n _ 1$.
$\exists\,n _ 2 \in \mathbb{N}$ such that $\left\lVert f _ m - f _ {n _ 2} \right\rVert _ p < \frac{1}{2^2}$ for all $m \geq n _ 2$.
Then, $\exists\,1 \leq n _ 1 < n _ 2 < \cdots < n _ k$ such that $\left\lVert f _ m - f _ {n _ k} \right\rVert _ p < \frac{1}{2^k}$ for $m \geq n _ k$.
Since $\displaystyle\left\lVert f _ {n _ {k+1}} - f _ {n _ k} \right\rVert _ p < \frac{1}{2^k}$, we have
$$\sum _ {k=1}^{\infty} \left\lVert f _ {n _ {k+1}} - f _ {n _ k} \right\rVert _ p < \infty.$$
By the above lemma, $\sum \left\lvert f _ {n _ {k+1}} - f _ {n _ k} \right\rvert$ and $\sum (f _ {n _ {k+1}} - f _ {n _ k})$ are finite. Let $f _ {n _ 0} \equiv 0$. Then as $m \rightarrow\infty$,
$$f _ {n _ {m+1}} = \sum _ {k=0}^{m} \left( f _ {n _ {k+1}} - f _ {n _ k} \right)$$
converges $\mu$-a.e. Take $N \in \mathscr{F}$ with $\mu(N) = 0$ such that $f _ {n _ k}$ converges on $X \setminus N$. Let
$$f(x) = \begin{cases} \displaystyle\lim _ {k \rightarrow\infty} f _ {n _ k} (x) & (x \in X \setminus N) \\ 0 & (x\in N) \end{cases}$$
then $f$ is measurable. Using the convergence,
$$\begin{aligned} \left\lVert f - f _ {n _ m} \right\rVert _ p & = \left\lVert \sum _ {k=m}^{\infty} \left( f _ {n _ {k+1}} (x) - f _ {n _ k}(x) \right) \right\rVert _ p \\ & \leq \left\lVert \sum _ {k=m}^{\infty} \left\lvert f _ {n _ {k+1}} (x) - f _ {n _ k}(x) \right\rvert \right\rVert _ p \\ & \leq \sum _ {k=m}^{\infty} \left\lVert f _ {n _ {k+1}} - f _ {n _ k} \right\rVert _ p \leq 2^{-m} \end{aligned}$$
by the choice of $f _ {n _ k}$. So $f _ {n _ k} \rightarrow f$ in $\mathcal{L}^{p}(\mu)$. Also, $f = (f - f _ {n _ k}) + f _ {n _ k} \in \mathcal{L}^{p}(\mu)$.
Let $\epsilon > 0$ be given. Since $\left( f _ n \right)$ is a Cauchy sequence in $\mathcal{L}^{p}$, $\exists\,N \in \mathbb{N}$ such that for all $n, m \geq N$, $\left\lVert f _ n - f _ m \right\rVert < \frac{\epsilon}{2}$. Note that $n _ k \geq k$, so $n _ k \geq N$ if $k \geq N$. Choose $N _ 1 \geq N$ such that for $k \geq N$, $\left\lVert f - f _ {n _ k} \right\rVert _ p < \frac{\epsilon}{2}$. Then for all $k \geq N _ 1$,
$$\left\lVert f - f _ k \right\rVert _ p \leq \left\lVert f - f _ {n _ k} \right\rVert _ p + \left\lVert f _ {n _ k} - f _ k \right\rVert _ p < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$
**참고.** $\mathcal{L}^{p}$ is a complete normed vector space, also known as **Banach space**.
**정리.** $C[a, b]$ is a dense subset of $\mathcal{L}^{p}[a, b]$. That is, for every $f \in \mathcal{L}^{p}[a, b]$ and $\epsilon > 0$, $\exists\,g \in C[a, b]$ such that $\left\lVert f - g \right\rVert _ p < \epsilon$.
**증명.** Let $A$ be a closed subset in $[a, b]$, and consider a distance function
$$d(x, A) = \inf _ {y\in A} \left\lvert x - y \right\rvert , \quad x \in [a, b].$$
Since $d(x, A) \leq \left\lvert x - z \right\rvert \leq \left\lvert x - y \right\rvert + \left\lvert y - z \right\rvert$ for all $z \in A$, taking infimum over $z \in A$ gives $d(x, A) \leq \left\lvert x - y \right\rvert + d(y, A)$. So
$$\left\lvert d(x, A) - d(y, A) \right\rvert \leq \left\lvert x - y \right\rvert ,$$
and $d(x, A)$ is continuous. If $d(x, A) = 0$, $\exists\,x _ n \in A$ such that $\left\lvert x _ n - x \right\rvert \rightarrow d(x, A) = 0$. Since $A$ is closed, $x \in A$. We know that $x \in A \iff d(x, A) = 0$.
Let
$$g _ n(x) = \frac{1}{1 + n d(x, A)}.$$
$g _ n$ is continuous, $g _ n(x) = 1$ if and only if $x \in A$. Also for all $x \in [a, b] \setminus A$, $g _ n(x) \rightarrow 0$ as $n \rightarrow\infty$. By Lebesgues dominated convergence theorem,
$$\begin{aligned} \left\lVert g _ n - \chi _ A \right\rVert _ p^p & = \int _ A \left\lvert g _ n - \chi _ A \right\rvert ^p \,d{x} + \int _ {[a, b]\setminus A} \left\lvert g _ n - \chi _ A \right\rvert ^p \,d{x} \\ & = 0 + \int _ {[a, b]\setminus A} \left\lvert g _ n \right\rvert ^p \,d{x} \rightarrow 0 \end{aligned}$$
since $\left\lvert g _ n \right\rvert ^p \leq 1$. We have shown that characteristic functions of closed sets can be approximated by continuous functions in $\mathcal{L}^{p}[a, b]$.
For every $A \in \mathfrak{M}(m)$, $\exists\,F _ \text{closed} \subseteq A$ such that $m(A \setminus F) < \epsilon$. Since $\chi _ A - \chi _ F = \chi _ {A \setminus F}$,
$$\begin{aligned} \int \left\lvert \chi _ A-\chi _ F \right\rvert ^p \,d{x} & = \int \left\lvert \chi _ {A\setminus F} \right\rvert ^p \,d{x} \\ & = \int _ {A\setminus F} \,d{x} = m(A \setminus F) < \epsilon. \end{aligned}$$
Therefore, for every $A \in \mathfrak{M}$, $\exists\,g _ n \in C[a, b]$ such that $\left\lVert g _ n - \chi _ A \right\rVert _ p \rightarrow 0$ as $n \rightarrow\infty$. So characteristic functions of any measurable set can be approximated by continuous functions in $\mathcal{L}^{p}[a, b]$.
Next, for any measurable simple function $f = \sum _ {k=1}^{m}a _ k \chi _ {A _ k}$, we can find $g _ n^k \in C[a, b]$ so that
$$\left\lVert f - \sum _ {k=1}^{m} a _ k g _ n^k \right\rVert _ p = \left\lVert \sum _ {k=1}^{m}a _ k \left( \chi _ {A _ k} - g _ n^k \right) \right\rVert _ p \rightarrow 0.$$
Next for $f \in \mathcal{L}^{p}$ and $f \geq 0$, there exist simple functions $f _ n \geq 0$ such that $f _ n \nearrow f$ in $\mathcal{L}^{p}$. Finally, any $f \in \mathcal{L}^{p}$ can be written as $f = f^+ - f^-$, which completes the proof.
이러한 확장을 해보면 굉장히 routine합니다. $\chi _ F$ for closed $F$ $\rightarrow$ $\chi _ A$ for measurable $A$ $\rightarrow$ measurable simple $f$ $\rightarrow$ $0\leq f \in \mathcal{L}^{p} \rightarrow$ $f \in \mathcal{L}^{p}$ 같은 순서로 확장합니다.