mirror of
https://github.com/calofmijuck/blog.git
synced 2025-12-06 14:53:50 +00:00
* [PUBLISHER] upload files #175 * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH NOTE : 03. Symmetric Key Cryptography (2).md * DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md * DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-19-symmetric-key-encryption.md * [PUBLISHER] upload files #177 * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH NOTE : 03. Symmetric Key Cryptography (2).md * DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md * DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-19-symmetric-key-encryptio.md * [PUBLISHER] upload files #178 * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH NOTE : 03. Symmetric Key Cryptography (2).md * DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md * [PUBLISHER] upload files #179 * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH NOTE : 03. Symmetric Key Cryptography (2).md * DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md * [PUBLISHER] upload files #180 * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH NOTE : 03. Symmetric Key Cryptography (2).md * DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md * [PUBLISHER] upload files #181 * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH NOTE : 03. Symmetric Key Cryptography (2).md * DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md * [PUBLISHER] upload files #182 * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH NOTE : 03. Symmetric Key Cryptography (2).md * [PUBLISHER] upload files #183 * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH NOTE : 03. Symmetric Key Cryptography (2).md * DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md * [PUBLISHER] upload files #184 * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH NOTE : 03. Symmetric Key Cryptography (2).md * DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md * [PUBLISHER] upload files #185 * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH NOTE : 03. Symmetric Key Cryptography (2).md * DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md * [PUBLISHER] upload files #186 * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH NOTE : 03. Symmetric Key Cryptography (2).md * [PUBLISHER] upload files #187 * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH NOTE : 14. Secure Multiparty Computation.md * DELETE FILE : _posts/Lecture Notes/Modern Cryptography/2023-09-19-symmetric-key-encryption.md * DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md * [PUBLISHER] upload files #188 * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH NOTE : 14. Secure Multiparty Computation.md * DELETE FILE : _posts/Lecture Notes/Modern Cryptography/2023-09-19-symmetric-key-encryption.md * chore: remove files * [PUBLISHER] upload files #197 * PUSH NOTE : 수학 공부에 대한 고찰.md * PUSH NOTE : 09. Lp Functions.md * PUSH ATTACHMENT : mt-09.png * PUSH NOTE : 08. Comparison with the Riemann Integral.md * PUSH ATTACHMENT : mt-08.png * PUSH NOTE : 04. Measurable Functions.md * PUSH ATTACHMENT : mt-04.png * PUSH NOTE : 06. Convergence Theorems.md * PUSH ATTACHMENT : mt-06.png * PUSH NOTE : 07. Dominated Convergence Theorem.md * PUSH ATTACHMENT : mt-07.png * PUSH NOTE : 05. Lebesgue Integration.md * PUSH ATTACHMENT : mt-05.png * PUSH NOTE : 03. Measure Spaces.md * PUSH ATTACHMENT : mt-03.png * PUSH NOTE : 02. Construction of Measure.md * PUSH ATTACHMENT : mt-02.png * PUSH NOTE : 01. Algebra of Sets and Set Functions.md * PUSH ATTACHMENT : mt-01.png * PUSH NOTE : Rules of Inference with Coq.md * PUSH NOTE : 블로그 이주 이야기.md * PUSH NOTE : Secure IAM on AWS with Multi-Account Strategy.md * PUSH ATTACHMENT : separation-by-product.png * PUSH NOTE : You and Your Research, Richard Hamming.md * PUSH NOTE : 10. Digital Signatures.md * PUSH ATTACHMENT : mc-10-dsig-security.png * PUSH ATTACHMENT : mc-10-schnorr-identification.png * PUSH NOTE : 9. Public Key Encryption.md * PUSH ATTACHMENT : mc-09-ss-pke.png * PUSH NOTE : 8. Number Theory.md * PUSH NOTE : 7. Key Exchange.md * PUSH ATTACHMENT : mc-07-dhke.png * PUSH ATTACHMENT : mc-07-dhke-mitm.png * PUSH ATTACHMENT : mc-07-merkle-puzzles.png * PUSH NOTE : 6. Hash Functions.md * PUSH ATTACHMENT : mc-06-merkle-damgard.png * PUSH ATTACHMENT : mc-06-davies-meyer.png * PUSH ATTACHMENT : mc-06-hmac.png * PUSH NOTE : 5. CCA-Security and Authenticated Encryption.md * PUSH ATTACHMENT : mc-05-ci.png * PUSH ATTACHMENT : mc-05-etm-mte.png * PUSH NOTE : 1. OTP, Stream Ciphers and PRGs.md * PUSH ATTACHMENT : mc-01-prg-game.png * PUSH ATTACHMENT : mc-01-ss.png * PUSH NOTE : 4. Message Authentication Codes.md * PUSH ATTACHMENT : mc-04-mac.png * PUSH ATTACHMENT : mc-04-mac-security.png * PUSH ATTACHMENT : mc-04-cbc-mac.png * PUSH ATTACHMENT : mc-04-ecbc-mac.png * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH ATTACHMENT : is-03-ecb-encryption.png * PUSH ATTACHMENT : is-03-cbc-encryption.png * PUSH ATTACHMENT : is-03-ctr-encryption.png * PUSH NOTE : 2. PRFs, PRPs and Block Ciphers.md * PUSH ATTACHMENT : mc-02-block-cipher.png * PUSH ATTACHMENT : mc-02-feistel-network.png * PUSH ATTACHMENT : mc-02-des-round.png * PUSH ATTACHMENT : mc-02-DES.png * PUSH ATTACHMENT : mc-02-aes-128.png * PUSH ATTACHMENT : mc-02-2des-mitm.png * PUSH NOTE : 18. Bootstrapping & CKKS.md * PUSH NOTE : 17. BGV Scheme.md * PUSH NOTE : 16. The GMW Protocol.md * PUSH ATTACHMENT : mc-16-beaver-triple.png * PUSH NOTE : 15. Garbled Circuits.md * PUSH NOTE : 14. Secure Multiparty Computation.md * PUSH NOTE : 13. Sigma Protocols.md * PUSH ATTACHMENT : mc-13-sigma-protocol.png * PUSH ATTACHMENT : mc-13-okamoto.png * PUSH ATTACHMENT : mc-13-chaum-pedersen.png * PUSH ATTACHMENT : mc-13-gq-protocol.png * PUSH NOTE : 12. Zero-Knowledge Proofs (Introduction).md * PUSH ATTACHMENT : mc-12-id-protocol.png * PUSH NOTE : 11. Advanced Topics.md * PUSH NOTE : 0. Introduction.md * PUSH NOTE : 02. Symmetric Key Cryptography (1).md * PUSH NOTE : 09. Transport Layer Security.md * PUSH ATTACHMENT : is-09-tls-handshake.png * PUSH NOTE : 08. Public Key Infrastructure.md * PUSH ATTACHMENT : is-08-certificate-validation.png * PUSH NOTE : 07. Public Key Cryptography.md * PUSH NOTE : 06. RSA and ElGamal Encryption.md * PUSH NOTE : 05. Modular Arithmetic (2).md * PUSH NOTE : 03. Symmetric Key Cryptography (2).md * PUSH ATTACHMENT : is-03-feistel-function.png * PUSH ATTACHMENT : is-03-cfb-encryption.png * PUSH ATTACHMENT : is-03-ofb-encryption.png * PUSH NOTE : 04. Modular Arithmetic (1).md * PUSH NOTE : 01. Security Introduction.md * PUSH ATTACHMENT : is-01-cryptosystem.png * PUSH NOTE : Search Time in Hash Tables.md * PUSH NOTE : 랜덤 PS일지 (1).md * chore: rearrange articles * feat: fix paths * feat: fix all broken links * feat: title font to palatino
5.4 KiB
5.4 KiB
share, toc, math, categories, path, tags, title, date, github_title
| share | toc | math | categories | path | tags | title | date | github_title | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| true | true | true |
|
_posts/mathematics/coq |
|
Rules of Inference with Coq | 2023-07-08 | 2023-07-08-rules-of-inference |
This is a list of proofs with Coq, for each rule of inference stated in List of Rules of Inference (Wikipedia)
Some rules that need the law of excluded middle are at the end of the section.
Rules for Negation
Lemma reductio_ad_absurdum : forall P Q : Prop,
(P -> Q) -> (P -> ~Q) -> ~P.
Proof.
intros. intros HP.
apply H0 in HP as HNQ.
apply H in HP as HQ.
contradiction.
Qed.
Lemma ex_contradictione_quodlibet : forall P Q : Prop,
P -> ~P -> Q.
Proof. intros. contradiction. Qed.
Lemma double_negation_introduction : forall P : Prop,
P -> ~~P.
Proof. auto. Qed.
Rules for Conditionals
Lemma modus_ponens : forall P Q : Prop,
(P -> Q) -> P -> Q.
Proof. auto. Qed.
Lemma modus_tollens : forall P Q : Prop,
(P -> Q) -> ~Q -> ~P.
Proof. auto. Qed.
Rules for Conjunctions
Lemma conjuction_introduction : forall P Q : Prop,
P -> Q -> P /\ Q.
Proof. auto. Qed.
Lemma conjunction_elimination_left : forall P Q : Prop,
P /\ Q -> P.
Proof. intros P Q [HP HQ]; auto. Qed.
Lemma conjunction_elimination_right : forall P Q : Prop,
P /\ Q -> Q.
Proof. intros P Q [HP HQ]; auto. Qed.
Lemma conjunction_commutative : forall P Q : Prop,
P /\ Q -> Q /\ P.
Proof.
intros. destruct H; split; auto.
Qed.
Lemma conjunction_associative : forall P Q R : Prop,
(P /\ Q) /\ R -> P /\ (Q /\ R).
Proof.
intros. destruct H as [H H1]; destruct H; split; auto.
Qed.
Rules for Disjunctions
Lemma disjunction_introduction_left : forall P Q : Prop,
P -> P \/ Q.
Proof. auto. Qed.
Lemma disjunction_introduction_right : forall P Q : Prop,
Q -> P \/ Q.
Proof. auto. Qed.
Lemma disjunction_elimination : forall P Q R : Prop,
(P -> R) -> (Q -> R) -> (P \/ Q) -> R.
Proof.
intros. destruct H1; auto.
Qed.
Lemma disjunctive_syllogism_left : forall P Q : Prop,
(P \/ Q) -> ~P -> Q.
Proof.
intros. destruct H; auto. contradiction.
Qed.
Lemma disjunctive_syllogism_right : forall P Q : Prop,
(P \/ Q) -> ~Q -> P.
Proof.
intros. destruct H; auto. contradiction.
Qed.
Lemma constructive_dilemma : forall P Q R S : Prop,
(P -> R) -> (Q -> S) -> (P \/ Q) -> (R \/ S).
Proof.
intros. destruct H1; auto.
Qed.
Lemma disjunction_commutative : forall P Q : Prop,
P \/ Q -> Q \/ P.
Proof. intros. destruct H; auto. Qed.
Lemma disunction_associative : forall P Q R : Prop,
(P \/ Q) \/ R -> P \/ (Q \/ R).
Proof.
intros. destruct H as [H | H]; auto.
destruct H; auto.
Qed.
Rules for Biconditionals
Lemma biconditional_introduction : forall P Q : Prop,
(P -> Q) -> (Q -> P) -> (P <-> Q).
Proof. split; auto. Qed.
Lemma biconditional_elimination_left_mp : forall P Q : Prop,
(P <-> Q) -> P -> Q.
Proof.
intros. destruct H; auto.
Qed.
Lemma biconditional_elimination_right_mp : forall P Q : Prop,
(P <-> Q) -> Q -> P.
Proof.
intros. destruct H; auto.
Qed.
Lemma biconditional_elimination_left_mt : forall P Q : Prop,
(P <-> Q) -> ~P -> ~Q.
Proof.
intros. destruct H; auto.
Qed.
Lemma biconditional_elimination_right_mt : forall P Q : Prop,
(P <-> Q) -> ~Q -> ~P.
Proof.
intros. destruct H; auto.
Qed.
Lemma biconditional_elimination_disjunction : forall P Q : Prop,
(P <-> Q) -> (P \/ Q) -> (P /\ Q).
Proof.
intros. destruct H, H0; auto.
Qed.
Lemma biconditional_elimination_disjunction_not : forall P Q : Prop,
(P <-> Q) -> (~P \/ ~Q) -> (~P /\ ~Q).
Proof.
intros. destruct H, H0; auto.
Qed.
Other Rules
Lemma exportation : forall P Q R : Prop,
(P /\ Q) -> R <-> (P -> Q -> R).
Proof.
split; auto.
destruct H; auto.
Qed.
Lemma distributive_disjunction : forall P Q R : Prop,
P \/ (Q /\ R) <-> (P \/ Q) /\ (P \/ R).
Proof.
split; intros.
- destruct H as [H | [H1 H2]]; split; auto.
- destruct H as [H1 H2]; destruct H1, H2; auto.
Qed.
Lemma distributive_conjunction : forall P Q R : Prop,
P /\ (Q \/ R) <-> (P /\ Q) \/ (P /\ R).
Proof.
split; intros.
- destruct H as [H [H1 | H1]]; auto.
- destruct H as [[H1 H2] | [H1 H2]]; auto.
Qed.
Lemma material_implication_converse : forall P Q : Prop,
(~P \/ Q) -> (P -> Q).
Proof.
intros. destruct H; auto. contradiction.
Qed.
Lemma resolution : forall P Q R : Prop,
(P \/ Q) -> (~P \/ R) -> (Q \/ R).
Proof.
intros. destruct H, H0; auto. contradiction.
Qed.
Rules that require Excluded Middle
We declare the law of excluded middle as an axiom.
Axiom excluded_middle : forall P : Prop, P \/ ~P.
Lemma double_negation_elimination : forall P : Prop,
~~P -> P.
Proof.
intros. destruct (excluded_middle P); auto. contradiction.
Qed.
Lemma material_implication : forall P Q : Prop,
(P -> Q) -> (~P \/ Q).
Proof.
intros. destruct (excluded_middle P); auto.
Qed.
Lemma reductio_ad_absurdum_neg : forall P Q : Prop,
(~P -> Q) -> (~P -> ~Q) -> P.
Proof.
intros. destruct (excluded_middle P); auto.
apply H in H1 as HQ.
apply H0 in H1 as HNQ.
contradiction.
Qed.
I was supposed to be reading the source for the paper Sequential Reasoning for Optimizing Compilers Under Weak Memory Concurrency but I got carried away...