Files
blog/_posts/Mathematics/measure-theory/2023-07-31-Lp-functions.md
Sungchan Yi 23aeb29ad8 feat: breaking change (unstable) (#198)
* [PUBLISHER] upload files #175

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-19-symmetric-key-encryption.md

* [PUBLISHER] upload files #177

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-19-symmetric-key-encryptio.md

* [PUBLISHER] upload files #178

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md

* [PUBLISHER] upload files #179

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md

* [PUBLISHER] upload files #180

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md

* [PUBLISHER] upload files #181

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md

* [PUBLISHER] upload files #182

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* [PUBLISHER] upload files #183

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md

* [PUBLISHER] upload files #184

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md

* [PUBLISHER] upload files #185

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md

* [PUBLISHER] upload files #186

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* [PUBLISHER] upload files #187

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 14. Secure Multiparty Computation.md

* DELETE FILE : _posts/Lecture Notes/Modern Cryptography/2023-09-19-symmetric-key-encryption.md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md

* [PUBLISHER] upload files #188

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 14. Secure Multiparty Computation.md

* DELETE FILE : _posts/Lecture Notes/Modern Cryptography/2023-09-19-symmetric-key-encryption.md

* chore: remove files

* [PUBLISHER] upload files #197

* PUSH NOTE : 수학 공부에 대한 고찰.md

* PUSH NOTE : 09. Lp Functions.md

* PUSH ATTACHMENT : mt-09.png

* PUSH NOTE : 08. Comparison with the Riemann Integral.md

* PUSH ATTACHMENT : mt-08.png

* PUSH NOTE : 04. Measurable Functions.md

* PUSH ATTACHMENT : mt-04.png

* PUSH NOTE : 06. Convergence Theorems.md

* PUSH ATTACHMENT : mt-06.png

* PUSH NOTE : 07. Dominated Convergence Theorem.md

* PUSH ATTACHMENT : mt-07.png

* PUSH NOTE : 05. Lebesgue Integration.md

* PUSH ATTACHMENT : mt-05.png

* PUSH NOTE : 03. Measure Spaces.md

* PUSH ATTACHMENT : mt-03.png

* PUSH NOTE : 02. Construction of Measure.md

* PUSH ATTACHMENT : mt-02.png

* PUSH NOTE : 01. Algebra of Sets and Set Functions.md

* PUSH ATTACHMENT : mt-01.png

* PUSH NOTE : Rules of Inference with Coq.md

* PUSH NOTE : 블로그 이주 이야기.md

* PUSH NOTE : Secure IAM on AWS with Multi-Account Strategy.md

* PUSH ATTACHMENT : separation-by-product.png

* PUSH NOTE : You and Your Research, Richard Hamming.md

* PUSH NOTE : 10. Digital Signatures.md

* PUSH ATTACHMENT : mc-10-dsig-security.png

* PUSH ATTACHMENT : mc-10-schnorr-identification.png

* PUSH NOTE : 9. Public Key Encryption.md

* PUSH ATTACHMENT : mc-09-ss-pke.png

* PUSH NOTE : 8. Number Theory.md

* PUSH NOTE : 7. Key Exchange.md

* PUSH ATTACHMENT : mc-07-dhke.png

* PUSH ATTACHMENT : mc-07-dhke-mitm.png

* PUSH ATTACHMENT : mc-07-merkle-puzzles.png

* PUSH NOTE : 6. Hash Functions.md

* PUSH ATTACHMENT : mc-06-merkle-damgard.png

* PUSH ATTACHMENT : mc-06-davies-meyer.png

* PUSH ATTACHMENT : mc-06-hmac.png

* PUSH NOTE : 5. CCA-Security and Authenticated Encryption.md

* PUSH ATTACHMENT : mc-05-ci.png

* PUSH ATTACHMENT : mc-05-etm-mte.png

* PUSH NOTE : 1. OTP, Stream Ciphers and PRGs.md

* PUSH ATTACHMENT : mc-01-prg-game.png

* PUSH ATTACHMENT : mc-01-ss.png

* PUSH NOTE : 4. Message Authentication Codes.md

* PUSH ATTACHMENT : mc-04-mac.png

* PUSH ATTACHMENT : mc-04-mac-security.png

* PUSH ATTACHMENT : mc-04-cbc-mac.png

* PUSH ATTACHMENT : mc-04-ecbc-mac.png

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH ATTACHMENT : is-03-ecb-encryption.png

* PUSH ATTACHMENT : is-03-cbc-encryption.png

* PUSH ATTACHMENT : is-03-ctr-encryption.png

* PUSH NOTE : 2. PRFs, PRPs and Block Ciphers.md

* PUSH ATTACHMENT : mc-02-block-cipher.png

* PUSH ATTACHMENT : mc-02-feistel-network.png

* PUSH ATTACHMENT : mc-02-des-round.png

* PUSH ATTACHMENT : mc-02-DES.png

* PUSH ATTACHMENT : mc-02-aes-128.png

* PUSH ATTACHMENT : mc-02-2des-mitm.png

* PUSH NOTE : 18. Bootstrapping & CKKS.md

* PUSH NOTE : 17. BGV Scheme.md

* PUSH NOTE : 16. The GMW Protocol.md

* PUSH ATTACHMENT : mc-16-beaver-triple.png

* PUSH NOTE : 15. Garbled Circuits.md

* PUSH NOTE : 14. Secure Multiparty Computation.md

* PUSH NOTE : 13. Sigma Protocols.md

* PUSH ATTACHMENT : mc-13-sigma-protocol.png

* PUSH ATTACHMENT : mc-13-okamoto.png

* PUSH ATTACHMENT : mc-13-chaum-pedersen.png

* PUSH ATTACHMENT : mc-13-gq-protocol.png

* PUSH NOTE : 12. Zero-Knowledge Proofs (Introduction).md

* PUSH ATTACHMENT : mc-12-id-protocol.png

* PUSH NOTE : 11. Advanced Topics.md

* PUSH NOTE : 0. Introduction.md

* PUSH NOTE : 02. Symmetric Key Cryptography (1).md

* PUSH NOTE : 09. Transport Layer Security.md

* PUSH ATTACHMENT : is-09-tls-handshake.png

* PUSH NOTE : 08. Public Key Infrastructure.md

* PUSH ATTACHMENT : is-08-certificate-validation.png

* PUSH NOTE : 07. Public Key Cryptography.md

* PUSH NOTE : 06. RSA and ElGamal Encryption.md

* PUSH NOTE : 05. Modular Arithmetic (2).md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* PUSH ATTACHMENT : is-03-feistel-function.png

* PUSH ATTACHMENT : is-03-cfb-encryption.png

* PUSH ATTACHMENT : is-03-ofb-encryption.png

* PUSH NOTE : 04. Modular Arithmetic (1).md

* PUSH NOTE : 01. Security Introduction.md

* PUSH ATTACHMENT : is-01-cryptosystem.png

* PUSH NOTE : Search Time in Hash Tables.md

* PUSH NOTE : 랜덤 PS일지 (1).md

* chore: rearrange articles

* feat: fix paths

* feat: fix all broken links

* feat: title font to palatino
2024-11-13 14:28:45 +09:00

217 lines
15 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
share: true
toc: true
math: true
categories:
- Mathematics
- Measure Theory
path: _posts/mathematics/measure-theory
tags:
- math
- analysis
- measure-theory
title: 09. $\mathcal{L}^p$ Functions
date: 2023-07-31
github_title: 2023-07-31-Lp-functions
image:
path: /assets/img/posts/mathematics/measure-theory/mt-09.png
attachment:
folder: assets/img/posts/mathematics/measure-theory
---
![mt-09.png](../../../assets/img/posts/mathematics/measure-theory/mt-09.png){: .w-50}
## Integration on Complex Valued Function
Let $(X, \mathscr{F}, \mu)$ be a measure space, and $E \in \mathscr{F}$.
**정의.**
1. A complex valued function $f = u + iv$, (where $u, v$ are real functions) is measurable if $u$ and $v$ are both measurable.
2. For a complex function $f$,
$$f \in \mathcal{L}^{1}(E, \mu) \iff \int _ E \left\lvert f \right\rvert \,d{\mu} < \infty \iff u, v \in \mathcal{L}^{1}(E, \mu).$$
3. If $f = u + iv \in \mathcal{L}^{1}(E, \mu)$, we define
$$\int _ E f \,d{\mu} = \int _ E u \,d{\mu} + i\int _ E v \,d{\mu}.$$
**참고.**
1. Linearity also holds for complex valued functions. For $f _ 1, f _ 2 \in \mathcal{L}^{1}(\mu)$ and $\alpha \in \mathbb{C}$,
$$\int _ E \left( f _ 1 + \alpha f _ 2 \right) \,d{\mu} = \int _ E f _ 1 \,d{\mu} + \alpha \int _ E f _ 2 \,d{\mu}.$$
2. Choose $c \in \mathbb{C}$ and $\left\lvert c \right\rvert = 1$ such that $\displaystyle c \int _ E f \,d{\mu} \geq 0$. This is possible since multiplying by $c$ is equivalent to a rotation.
Now set $cf = u + vi$ where $u, v$ are real functions and the integral of $v$ over $E$ is $0$. Then,
$$\begin{aligned} \left\lvert \int _ E f \,d{\mu} \right\rvert & = c \int _ E f\,d{\mu} = \int _ E u \,d{\mu} \\ & \leq \int _ E (u^2+v^2)^{1/2} \,d{\mu} \\ & = \int _ E \left\lvert cf \right\rvert \,d{\mu} = \int _ E \left\lvert f \right\rvert \,d{\mu}. \end{aligned}$$
## Functions of Class $\mathcal{L}^{p}$
### $\mathcal{L}^p$ Space
Assume that $(X, \mathscr{F}, \mu)$ is given and $X = E$.
**정의.** ($\mathcal{L}^{p}$) A complex function $f$ is in $\mathcal{L}^{p}(\mu)$ if $f$ is measurable and $\displaystyle\int _ E \left\lvert f \right\rvert ^p \,d{\mu} < \infty$.
**정의.** ($\mathcal{L}^{p}$-norm) **$\mathcal{L}^{p}$-norm** of $f$ is defined as
$$\left\lVert f \right\rVert _ p = \left[\int _ E \left\lvert f \right\rvert ^p \,d{\mu} \right]^{1/p}.$$
### Inequalities
**정리.** (Young Inequality) For $a, b \geq 0$, if $p > 1$ and $1/p + 1/q = 1$, then
$$ab \leq \frac{a^p}{p} + \frac{b^q}{q}.$$
**증명.** From $1/p + 1/q = 1$, $p - 1 = \frac{1}{q - 1}$. The graph $y = x^{p - 1}$ is equal to the graph of $x = y^{q - 1}$. Sketch the graph on the $xy$-plane and consider the area bounded by $x = 0$, $x = a$, $y = 0$, $y = b$. Then we directly see that
$$\int _ 0^a x^{p-1} \,d{x} + \int _ 0^b y^{q-1} \,d{y} \geq ab,$$
with equality when $a^p = b^q$. Evaluating the integral gives the desired inequality.
**참고.** For $\mathscr{F}$-measurable $f, g$ on $X$,
$$\left\lvert fg \right\rvert \leq \frac{\left\lvert f \right\rvert ^p}{p} + \frac{\left\lvert g \right\rvert ^q}{q} \implies \left\lVert fg \right\rVert _ 1 \leq \frac{\left\lVert f \right\rVert _ p^p}{p} + \frac{\left\lVert g \right\rVert _ q^q}{q}$$
by Young inequality. In particular, if $\left\lVert f \right\rVert _ p = \left\lVert g \right\rVert _ q = 1$, then $\left\lVert fg \right\rVert _ 1 \leq 1$.
**정리.** (Hölder Inequality) Let $1 < p < \infty$ and $\displaystyle\frac{1}{p} + \frac{1}{q} = 1$. If $f, g$ are measurable,
$$\left\lVert fg \right\rVert _ 1 \leq \left\lVert f \right\rVert _ p \left\lVert g \right\rVert _ q.$$
So if $f \in \mathcal{L}^{p}(\mu)$ and $g \in \mathcal{L}^{q}(\mu)$, then $fg \in \mathcal{L}^{1}(\mu)$.
**증명.** If $\left\lVert f \right\rVert _ p = 0$ or $\left\lVert g \right\rVert _ q = 0$ then $f = 0$ a.e. or $g = 0$ a.e. So $fg = 0$ a.e. and $\left\lVert fg \right\rVert _ 1 = 0$.
Now suppose that $\left\lVert f \right\rVert _ p > 0$ and $\left\lVert g \right\rVert _ q > 0$. By the remark above, the result directly follows from
$$\left\lVert \frac{f}{\left\lVert f \right\rVert _ p} \cdot \frac{g}{\left\lVert g \right\rVert _ q} \right\rVert _ 1 \leq 1.$$
**정리.** (Minkowski Inequality) For $1 \leq p < \infty$, if $f, g$ are measurable, then
$$\left\lVert f + g \right\rVert _ p \leq \left\lVert f \right\rVert _ p + \left\lVert g \right\rVert _ p.$$
**증명.** If $f, g \notin \mathcal{L}^{p}$, the right hand side is $\infty$ and we are done. For $p = 1$, the equality is equivalent to the triangle inequality. Also if $\left\lVert f + g \right\rVert _ p = 0$, the inequality holds trivially. We suppose that $p > 1$, $f, g \in \mathcal{L}^p$ and $\left\lVert f+g \right\rVert _ p > 0$.
Let $q = \frac{p}{p-1}$. Since
$$\begin{aligned} \left\lvert f + g \right\rvert ^p & = \left\lvert f + g \right\rvert \cdot \left\lvert f + g \right\rvert ^{p - 1} \\ & \leq \bigl(\left\lvert f \right\rvert + \left\lvert g \right\rvert \bigr) \left\lvert f + g \right\rvert ^{p-1}, \end{aligned}$$
we have
$$\begin{aligned} \int \left\lvert f+g \right\rvert ^p & \leq \int \left\lvert f \right\rvert \cdot \left\lvert f+g \right\rvert ^{p-1} + \int \left\lvert g \right\rvert \cdot \left\lvert f+g \right\rvert ^{p-1} \\ & \leq \left( \int \left\lvert f \right\rvert ^p \right)^{1/p}\left( \int \left\lvert f+g \right\rvert ^{(p-1)q} \right)^{1/q} \\ & \quad + \left( \int \left\lvert q \right\rvert ^p \right)^{1/p}\left( \int \left\lvert f+g \right\rvert ^{(p-1)q} \right)^{1/q} \\ & = \left( \left\lVert f \right\rVert _ p + \left\lVert g \right\rVert _ p \right) \left( \int \left\lvert f+g \right\rvert ^p \right)^{1/q}. \end{aligned}$$
Since $\left\lVert f + g \right\rVert _ p^p > 0$, we have
$$\begin{aligned} \left\lVert f + g \right\rVert _ p & = \left( \int \left\lvert f+g \right\rvert ^p \right)^{1/p} \\ & = \left( \int \left\lvert f+g \right\rvert ^p \right)^{1 - \frac{1}{q}} \\ & \leq \left\lVert f \right\rVert _ p + \left\lVert g \right\rVert _ p. \end{aligned}$$
**정의.** $f \sim g \iff f = g$ $\mu$-a.e. and define
$$[f] = \left\lbrace g : f \sim g\right\rbrace.$$
We treat $[f]$ as an element in $\mathcal{L}^{p}(X, \mu)$, and write $f = [f]$.
**참고.**
1. We write $\left\lVert f \right\rVert _ p = 0 \iff f = [0] = 0$ in the sense that $f = 0$ $\mu$-a.e.
2. Now $\lVert \cdot \rVert _ p$ is a **norm** in $\mathcal{L}^{p}(X, \mu)$ so $d(f, g) = \left\lVert f - g \right\rVert _ p$ is a **metric** in $\mathcal{L}^{p}(X, \mu)$.
## Completeness of $\mathcal{L}^p$
Now we have a *function space*, so we are interested in its *completeness*.
**정의.** (Convergence in $\mathcal{L}^p$) Let $f, f _ n \in \mathcal{L}^{p}(\mu)$.
1. $f _ n \rightarrow f$ in $\mathcal{L}^p(\mu) \iff \left\lVert f _ n-f \right\rVert _ p \rightarrow 0$ as $n \rightarrow\infty$.
2. $\left( f _ n \right) _ {n=1}^\infty$ is a Cauchy sequence in $\mathcal{L}^{p}(\mu)$ if and only if
> $\forall \epsilon > 0$, $\exists\,N > 0$ such that $n, m \geq N \implies \left\lVert f _ n-f _ m \right\rVert _ p < \epsilon$.
**도움정리.** Let $\left( g _ n \right)$ be a sequence of measurable functions. Then,
$$\left\lVert \sum _ {n=1}^{\infty} \left\lvert g _ n \right\rvert \right\rVert _ p \leq \sum _ {n=1}^{\infty} \left\lVert g _ n \right\rVert _ p.$$
Thus, if $\displaystyle\sum _ {n=1}^{\infty} \left\lVert g _ n \right\rVert _ p < \infty$, then $\displaystyle\sum _ {n=1}^{\infty} \left\lvert g _ n \right\rvert < \infty$ $\mu$-a.e. So $\displaystyle\sum _ {n=1}^{\infty} g _ n < \infty$ $\mu$-a.e.
**증명.** By monotone convergence theorem and Minkowski inequality,
$$\begin{aligned} \left\lVert \sum _ {n=1}^{\infty} \left\lvert g _ n \right\rvert \right\rVert _ p & = \lim _ {m \rightarrow\infty} \left\lVert \sum _ {n=1}^{m} \left\lvert g _ n \right\rvert \right\rVert _ p \\ & \leq \lim _ {n \rightarrow\infty} \sum _ {n=1}^{m} \left\lVert g _ n \right\rVert _ p \\ & = \sum _ {n=1}^{\infty} \left\lVert g _ n \right\rVert _ p < \infty. \end{aligned}$$
Thus $\displaystyle\sum _ {n=1}^{\infty} \left\lvert g _ n \right\rvert < \infty$ $\mu$-a.e. and $\displaystyle\sum _ {n=1}^{\infty} g _ n < \infty$ $\mu$-a.e. by absolute convergence.
**정리.** (Fischer) Suppose $\left( f _ n \right)$ is a Cauchy sequence in $\mathcal{L}^{p}(\mu)$. Then there exists $f \in \mathcal{L}^{p}(\mu)$ such that $f _ n \rightarrow f$ in $\mathcal{L}^{p}(\mu)$.
**증명.** We construct $\left( n _ k \right)$ by the following procedure.
$\exists\,n _ 1 \in \mathbb{N}$ such that $\left\lVert f _ m - f _ {n _ 1} \right\rVert _ p < \frac{1}{2}$ for all $m \geq n _ 1$.
$\exists\,n _ 2 \in \mathbb{N}$ such that $\left\lVert f _ m - f _ {n _ 2} \right\rVert _ p < \frac{1}{2^2}$ for all $m \geq n _ 2$.
Then, $\exists\,1 \leq n _ 1 < n _ 2 < \cdots < n _ k$ such that $\left\lVert f _ m - f _ {n _ k} \right\rVert _ p < \frac{1}{2^k}$ for $m \geq n _ k$.
Since $\displaystyle\left\lVert f _ {n _ {k+1}} - f _ {n _ k} \right\rVert _ p < \frac{1}{2^k}$, we have
$$\sum _ {k=1}^{\infty} \left\lVert f _ {n _ {k+1}} - f _ {n _ k} \right\rVert _ p < \infty.$$
By the above lemma, $\sum \left\lvert f _ {n _ {k+1}} - f _ {n _ k} \right\rvert$ and $\sum (f _ {n _ {k+1}} - f _ {n _ k})$ are finite. Let $f _ {n _ 0} \equiv 0$. Then as $m \rightarrow\infty$,
$$f _ {n _ {m+1}} = \sum _ {k=0}^{m} \left( f _ {n _ {k+1}} - f _ {n _ k} \right)$$
converges $\mu$-a.e. Take $N \in \mathscr{F}$ with $\mu(N) = 0$ such that $f _ {n _ k}$ converges on $X \setminus N$. Let
$$f(x) = \begin{cases} \displaystyle\lim _ {k \rightarrow\infty} f _ {n _ k} (x) & (x \in X \setminus N) \\ 0 & (x\in N) \end{cases}$$
then $f$ is measurable. Using the convergence,
$$\begin{aligned} \left\lVert f - f _ {n _ m} \right\rVert _ p & = \left\lVert \sum _ {k=m}^{\infty} \left( f _ {n _ {k+1}} (x) - f _ {n _ k}(x) \right) \right\rVert _ p \\ & \leq \left\lVert \sum _ {k=m}^{\infty} \left\lvert f _ {n _ {k+1}} (x) - f _ {n _ k}(x) \right\rvert \right\rVert _ p \\ & \leq \sum _ {k=m}^{\infty} \left\lVert f _ {n _ {k+1}} - f _ {n _ k} \right\rVert _ p \leq 2^{-m} \end{aligned}$$
by the choice of $f _ {n _ k}$. So $f _ {n _ k} \rightarrow f$ in $\mathcal{L}^{p}(\mu)$. Also, $f = (f - f _ {n _ k}) + f _ {n _ k} \in \mathcal{L}^{p}(\mu)$.
Let $\epsilon > 0$ be given. Since $\left( f _ n \right)$ is a Cauchy sequence in $\mathcal{L}^{p}$, $\exists\,N \in \mathbb{N}$ such that for all $n, m \geq N$, $\left\lVert f _ n - f _ m \right\rVert < \frac{\epsilon}{2}$. Note that $n _ k \geq k$, so $n _ k \geq N$ if $k \geq N$. Choose $N _ 1 \geq N$ such that for $k \geq N$, $\left\lVert f - f _ {n _ k} \right\rVert _ p < \frac{\epsilon}{2}$. Then for all $k \geq N _ 1$,
$$\left\lVert f - f _ k \right\rVert _ p \leq \left\lVert f - f _ {n _ k} \right\rVert _ p + \left\lVert f _ {n _ k} - f _ k \right\rVert _ p < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$
**참고.** $\mathcal{L}^{p}$ is a complete normed vector space, also known as **Banach space**.
**정리.** $C[a, b]$ is a dense subset of $\mathcal{L}^{p}[a, b]$. That is, for every $f \in \mathcal{L}^{p}[a, b]$ and $\epsilon > 0$, $\exists\,g \in C[a, b]$ such that $\left\lVert f - g \right\rVert _ p < \epsilon$.
**증명.** Let $A$ be a closed subset in $[a, b]$, and consider a distance function
$$d(x, A) = \inf _ {y\in A} \left\lvert x - y \right\rvert , \quad x \in [a, b].$$
Since $d(x, A) \leq \left\lvert x - z \right\rvert \leq \left\lvert x - y \right\rvert + \left\lvert y - z \right\rvert$ for all $z \in A$, taking infimum over $z \in A$ gives $d(x, A) \leq \left\lvert x - y \right\rvert + d(y, A)$. So
$$\left\lvert d(x, A) - d(y, A) \right\rvert \leq \left\lvert x - y \right\rvert ,$$
and $d(x, A)$ is continuous. If $d(x, A) = 0$, $\exists\,x _ n \in A$ such that $\left\lvert x _ n - x \right\rvert \rightarrow d(x, A) = 0$. Since $A$ is closed, $x \in A$. We know that $x \in A \iff d(x, A) = 0$.
Let
$$g _ n(x) = \frac{1}{1 + n d(x, A)}.$$
$g _ n$ is continuous, $g _ n(x) = 1$ if and only if $x \in A$. Also for all $x \in [a, b] \setminus A$, $g _ n(x) \rightarrow 0$ as $n \rightarrow\infty$. By Lebesgues dominated convergence theorem,
$$\begin{aligned} \left\lVert g _ n - \chi _ A \right\rVert _ p^p & = \int _ A \left\lvert g _ n - \chi _ A \right\rvert ^p \,d{x} + \int _ {[a, b]\setminus A} \left\lvert g _ n - \chi _ A \right\rvert ^p \,d{x} \\ & = 0 + \int _ {[a, b]\setminus A} \left\lvert g _ n \right\rvert ^p \,d{x} \rightarrow 0 \end{aligned}$$
since $\left\lvert g _ n \right\rvert ^p \leq 1$. We have shown that characteristic functions of closed sets can be approximated by continuous functions in $\mathcal{L}^{p}[a, b]$.
For every $A \in \mathfrak{M}(m)$, $\exists\,F _ \text{closed} \subseteq A$ such that $m(A \setminus F) < \epsilon$. Since $\chi _ A - \chi _ F = \chi _ {A \setminus F}$,
$$\begin{aligned} \int \left\lvert \chi _ A-\chi _ F \right\rvert ^p \,d{x} & = \int \left\lvert \chi _ {A\setminus F} \right\rvert ^p \,d{x} \\ & = \int _ {A\setminus F} \,d{x} = m(A \setminus F) < \epsilon. \end{aligned}$$
Therefore, for every $A \in \mathfrak{M}$, $\exists\,g _ n \in C[a, b]$ such that $\left\lVert g _ n - \chi _ A \right\rVert _ p \rightarrow 0$ as $n \rightarrow\infty$. So characteristic functions of any measurable set can be approximated by continuous functions in $\mathcal{L}^{p}[a, b]$.
Next, for any measurable simple function $f = \sum _ {k=1}^{m}a _ k \chi _ {A _ k}$, we can find $g _ n^k \in C[a, b]$ so that
$$\left\lVert f - \sum _ {k=1}^{m} a _ k g _ n^k \right\rVert _ p = \left\lVert \sum _ {k=1}^{m}a _ k \left( \chi _ {A _ k} - g _ n^k \right) \right\rVert _ p \rightarrow 0.$$
Next for $f \in \mathcal{L}^{p}$ and $f \geq 0$, there exist simple functions $f _ n \geq 0$ such that $f _ n \nearrow f$ in $\mathcal{L}^{p}$. Finally, any $f \in \mathcal{L}^{p}$ can be written as $f = f^+ - f^-$, which completes the proof.
이러한 확장을 해보면 굉장히 routine합니다. $\chi _ F$ for closed $F$ $\rightarrow$ $\chi _ A$ for measurable $A$ $\rightarrow$ measurable simple $f$ $\rightarrow$ $0\leq f \in \mathcal{L}^{p} \rightarrow$ $f \in \mathcal{L}^{p}$ 같은 순서로 확장합니다.