mirror of
https://github.com/calofmijuck/blog.git
synced 2025-12-06 22:53:51 +00:00
* [PUBLISHER] upload files #175 * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH NOTE : 03. Symmetric Key Cryptography (2).md * DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md * DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-19-symmetric-key-encryption.md * [PUBLISHER] upload files #177 * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH NOTE : 03. Symmetric Key Cryptography (2).md * DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md * DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-19-symmetric-key-encryptio.md * [PUBLISHER] upload files #178 * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH NOTE : 03. Symmetric Key Cryptography (2).md * DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md * [PUBLISHER] upload files #179 * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH NOTE : 03. Symmetric Key Cryptography (2).md * DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md * [PUBLISHER] upload files #180 * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH NOTE : 03. Symmetric Key Cryptography (2).md * DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md * [PUBLISHER] upload files #181 * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH NOTE : 03. Symmetric Key Cryptography (2).md * DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md * [PUBLISHER] upload files #182 * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH NOTE : 03. Symmetric Key Cryptography (2).md * [PUBLISHER] upload files #183 * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH NOTE : 03. Symmetric Key Cryptography (2).md * DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md * [PUBLISHER] upload files #184 * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH NOTE : 03. Symmetric Key Cryptography (2).md * DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md * [PUBLISHER] upload files #185 * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH NOTE : 03. Symmetric Key Cryptography (2).md * DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md * [PUBLISHER] upload files #186 * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH NOTE : 03. Symmetric Key Cryptography (2).md * [PUBLISHER] upload files #187 * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH NOTE : 14. Secure Multiparty Computation.md * DELETE FILE : _posts/Lecture Notes/Modern Cryptography/2023-09-19-symmetric-key-encryption.md * DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md * [PUBLISHER] upload files #188 * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH NOTE : 14. Secure Multiparty Computation.md * DELETE FILE : _posts/Lecture Notes/Modern Cryptography/2023-09-19-symmetric-key-encryption.md * chore: remove files * [PUBLISHER] upload files #197 * PUSH NOTE : 수학 공부에 대한 고찰.md * PUSH NOTE : 09. Lp Functions.md * PUSH ATTACHMENT : mt-09.png * PUSH NOTE : 08. Comparison with the Riemann Integral.md * PUSH ATTACHMENT : mt-08.png * PUSH NOTE : 04. Measurable Functions.md * PUSH ATTACHMENT : mt-04.png * PUSH NOTE : 06. Convergence Theorems.md * PUSH ATTACHMENT : mt-06.png * PUSH NOTE : 07. Dominated Convergence Theorem.md * PUSH ATTACHMENT : mt-07.png * PUSH NOTE : 05. Lebesgue Integration.md * PUSH ATTACHMENT : mt-05.png * PUSH NOTE : 03. Measure Spaces.md * PUSH ATTACHMENT : mt-03.png * PUSH NOTE : 02. Construction of Measure.md * PUSH ATTACHMENT : mt-02.png * PUSH NOTE : 01. Algebra of Sets and Set Functions.md * PUSH ATTACHMENT : mt-01.png * PUSH NOTE : Rules of Inference with Coq.md * PUSH NOTE : 블로그 이주 이야기.md * PUSH NOTE : Secure IAM on AWS with Multi-Account Strategy.md * PUSH ATTACHMENT : separation-by-product.png * PUSH NOTE : You and Your Research, Richard Hamming.md * PUSH NOTE : 10. Digital Signatures.md * PUSH ATTACHMENT : mc-10-dsig-security.png * PUSH ATTACHMENT : mc-10-schnorr-identification.png * PUSH NOTE : 9. Public Key Encryption.md * PUSH ATTACHMENT : mc-09-ss-pke.png * PUSH NOTE : 8. Number Theory.md * PUSH NOTE : 7. Key Exchange.md * PUSH ATTACHMENT : mc-07-dhke.png * PUSH ATTACHMENT : mc-07-dhke-mitm.png * PUSH ATTACHMENT : mc-07-merkle-puzzles.png * PUSH NOTE : 6. Hash Functions.md * PUSH ATTACHMENT : mc-06-merkle-damgard.png * PUSH ATTACHMENT : mc-06-davies-meyer.png * PUSH ATTACHMENT : mc-06-hmac.png * PUSH NOTE : 5. CCA-Security and Authenticated Encryption.md * PUSH ATTACHMENT : mc-05-ci.png * PUSH ATTACHMENT : mc-05-etm-mte.png * PUSH NOTE : 1. OTP, Stream Ciphers and PRGs.md * PUSH ATTACHMENT : mc-01-prg-game.png * PUSH ATTACHMENT : mc-01-ss.png * PUSH NOTE : 4. Message Authentication Codes.md * PUSH ATTACHMENT : mc-04-mac.png * PUSH ATTACHMENT : mc-04-mac-security.png * PUSH ATTACHMENT : mc-04-cbc-mac.png * PUSH ATTACHMENT : mc-04-ecbc-mac.png * PUSH NOTE : 3. Symmetric Key Encryption.md * PUSH ATTACHMENT : is-03-ecb-encryption.png * PUSH ATTACHMENT : is-03-cbc-encryption.png * PUSH ATTACHMENT : is-03-ctr-encryption.png * PUSH NOTE : 2. PRFs, PRPs and Block Ciphers.md * PUSH ATTACHMENT : mc-02-block-cipher.png * PUSH ATTACHMENT : mc-02-feistel-network.png * PUSH ATTACHMENT : mc-02-des-round.png * PUSH ATTACHMENT : mc-02-DES.png * PUSH ATTACHMENT : mc-02-aes-128.png * PUSH ATTACHMENT : mc-02-2des-mitm.png * PUSH NOTE : 18. Bootstrapping & CKKS.md * PUSH NOTE : 17. BGV Scheme.md * PUSH NOTE : 16. The GMW Protocol.md * PUSH ATTACHMENT : mc-16-beaver-triple.png * PUSH NOTE : 15. Garbled Circuits.md * PUSH NOTE : 14. Secure Multiparty Computation.md * PUSH NOTE : 13. Sigma Protocols.md * PUSH ATTACHMENT : mc-13-sigma-protocol.png * PUSH ATTACHMENT : mc-13-okamoto.png * PUSH ATTACHMENT : mc-13-chaum-pedersen.png * PUSH ATTACHMENT : mc-13-gq-protocol.png * PUSH NOTE : 12. Zero-Knowledge Proofs (Introduction).md * PUSH ATTACHMENT : mc-12-id-protocol.png * PUSH NOTE : 11. Advanced Topics.md * PUSH NOTE : 0. Introduction.md * PUSH NOTE : 02. Symmetric Key Cryptography (1).md * PUSH NOTE : 09. Transport Layer Security.md * PUSH ATTACHMENT : is-09-tls-handshake.png * PUSH NOTE : 08. Public Key Infrastructure.md * PUSH ATTACHMENT : is-08-certificate-validation.png * PUSH NOTE : 07. Public Key Cryptography.md * PUSH NOTE : 06. RSA and ElGamal Encryption.md * PUSH NOTE : 05. Modular Arithmetic (2).md * PUSH NOTE : 03. Symmetric Key Cryptography (2).md * PUSH ATTACHMENT : is-03-feistel-function.png * PUSH ATTACHMENT : is-03-cfb-encryption.png * PUSH ATTACHMENT : is-03-ofb-encryption.png * PUSH NOTE : 04. Modular Arithmetic (1).md * PUSH NOTE : 01. Security Introduction.md * PUSH ATTACHMENT : is-01-cryptosystem.png * PUSH NOTE : Search Time in Hash Tables.md * PUSH NOTE : 랜덤 PS일지 (1).md * chore: rearrange articles * feat: fix paths * feat: fix all broken links * feat: title font to palatino
349 lines
15 KiB
Markdown
349 lines
15 KiB
Markdown
---
|
|
share: true
|
|
toc: true
|
|
math: true
|
|
categories:
|
|
- Lecture Notes
|
|
- Modern Cryptography
|
|
path: _posts/lecture-notes/modern-cryptography
|
|
tags:
|
|
- lecture-note
|
|
- cryptography
|
|
- security
|
|
title: 18. Bootstrapping & CKKS
|
|
date: 2023-12-08
|
|
github_title: 2023-12-08-bootstrapping-ckks
|
|
---
|
|
|
|
## Bootstrapping
|
|
|
|
Recall that BGV has a limit on the number of operations, so it cannot evaluate a circuit with a large depth. This was because of the growing noise, so we need a way to remove the noise.
|
|
|
|
An easy answer is decrypting the ciphertext and encrypting it again, but we want to do it without using the secret key.
|
|
|
|
**Bootstrapping** is a method to convert SHE into FHE.
|
|
|
|
### Key Idea
|
|
|
|
The main idea is to *homomorphically evaluate the decryption circuit over encrypted $\bf{s}$*.
|
|
|
|
Let $\bf{c}$ be an encryption of $m \in \braces{0, 1}$, at the lowest level $0$. (Cannot perform multiplications anymore) The decryption algorithm, with a secret $\bf{s}$ fixed, is a function of $\bf{c}$.
|
|
|
|
Change the perspective and view it as a function of $\bf{s}$.
|
|
|
|
$$
|
|
f(\bf{s}) = D(\bf{s}, \bf{c}) : \braces{0, 1}^n \ra \braces{0, 1}
|
|
$$
|
|
|
|
Then $f(\bf{s}) = m$.
|
|
|
|
Let $\bf{s}' \in \braces{0, 1}^n$ be a new secret key. Generate the **bootstrapping keys**
|
|
|
|
$$
|
|
BK = \braces{\bf{k} _ i} _ {i=1}^n, \qquad \bf{k} _ i = E(\bf{s}', s _ i).
|
|
$$
|
|
|
|
Then by the homomorphic property of $f$,
|
|
|
|
$$
|
|
f(\bf{k _ 1}, \bf{k} _ 2, \dots, \bf{k} _ n) = f\big( E(\bf{s}', s _ 1), \dots, E(\bf{s}', s _ n) \big) = E\big( \bf{s}', f(s _ 1, \dots, s _ n) \big) = E(\bf{s}', m).
|
|
$$
|
|
|
|
#### Example with BGV
|
|
|
|
Technically, the expression $f(\bf{k _ 1}, \bf{k} _ 2, \dots, \bf{k} _ n)$ doesn't make sense, but it works. Consider a message $m$ encrypted with secret $\bf{s}$ in the BGV scheme.
|
|
|
|
$$
|
|
\bf{c} = (b, \bf{a}), \quad b = -\span{\bf{a}, \bf{s}} + m + 2e \pmod q.
|
|
$$
|
|
|
|
The decryption is $r = b + \span{\bf{a}, \bf{s}} \pmod q$, and then taking the least significant bit. Consider it as a function
|
|
|
|
$$
|
|
f(\bf{s}) = b + \span{\bf{a}, \bf{s}} = b + \sum _ {i=1}^n a _ is _ i.
|
|
$$
|
|
|
|
For a new key $\bf{s}' = (s _ 1', \dots, s _ n')$, generate bootstrapping keys $\bf{k} _ i = E(\bf{s}', s _ i)$ and plugging it in forcefully gives
|
|
|
|
$$
|
|
\begin{aligned}
|
|
f(\bf{k} _ 1, \dots, \bf{k} _ n) &= b + \sum _ {i=1}^n a _ i E(\bf{s}', s _ i) = b + \sum _ {i=1}^n E(\bf{s}', a _ is _ i) \\
|
|
&=b + E\paren{\bf{s}', \sum _ {i=1}^n a _ is _ i} = b + E\paren{\bf{s}', \span{\bf{a}, \bf{s}}}.
|
|
\end{aligned}
|
|
$$
|
|
|
|
Since an encryption of $\span{\bf{a}, \bf{s}}$ with $\bf{s}'$ is $-\span{\bf{a}', \bf{s}'} + \span{\bf{a}, \bf{s}} + 2e' \pmod q$, the above equation equals
|
|
|
|
$$
|
|
\begin{aligned}
|
|
b' &=b -\span{\bf{a}', \bf{s}'} + \span{\bf{a}, \bf{s}} + 2e' \\
|
|
&= -\span{\bf{a}', \bf{s}'} + m + 2(e + e') \pmod q.
|
|
\end{aligned}
|
|
$$
|
|
|
|
Indeed, decrypting $b'$ will give $m$. So we have $E(\bf{s}', m)$ from $f(\bf{k} _ 1, \dots, \bf{k} _ n)$.[^1]
|
|
|
|
### Bootstrapping Procedure
|
|
|
|
> Given an encryption $\bf{c}$ of $m$ at level $0$, perform the following procedure.
|
|
>
|
|
> **Bootstrapping Key Generation**
|
|
> - Choose a new secret key $\bf{s}' \in \braces{0, 1}^n$.
|
|
> - Generate *bootstrapping key* $BK = \braces{\bf{k} _ i} _ {i=1}^n$ where $\bf{k} _ i = E(\bf{s}', s _ i)$.
|
|
>
|
|
> **Bootstrapping**
|
|
> - Generate a circuit representation $f : \braces{0, 1}^n \ra \braces{0, 1}$ of the decryption function $D(\cdot, \bf{c})$.
|
|
> - Compute and output $\bf{c}' = f(\bf{k} _ 1, \dots, \bf{k} _ n)$.
|
|
|
|
The bootstrapping procedure returns an encryption of $m$ under $\bf{s}'$, as shown above. The key idea here is that $\bf{k} _ i$ are *fresh* ciphertexts at level $L$. Even though a few levels are consumed during the evaluation of $f$, the resulting ciphertext $\bf{c}'$ is not at level $0$ anymore, allowing us to do more computation.
|
|
|
|
> Suppose that the homomorphic evaluation of $f$ requires depth $d$, consuming $d$ levels. Then we say that the BGV scheme is **bootstrappable** if $d < L$. The output ciphertext $\bf{c}'$ will have level $l = L - d > 0$, which we call **remaining level**.
|
|
|
|
Thus, we need to set $L$ large enough in the BGV scheme so that it is bootstrappable. But larger $L$ results in larger $q$, reducing the security of the scheme. This is another reason we must use **modulus switching**. Without it, we wouldn't have been able to set $L$ large enough for bootstrapping.
|
|
|
|
### Fully Homomorphic Encryption
|
|
|
|
Thus, if BGV is bootstrappable, then we can apply bootstrapping on the ciphertext whenever its level reaches $0$. Now we can evaluate *any* circuit of finite depth.
|
|
|
|
There is a slight catch here. For every bootstrapping procedure, we need a bootstrapping key. This must be generated by the owner of the original secret. As a result, lots of secret keys are required to homomorphically evaluate a circuit.
|
|
|
|
$$
|
|
\bf{s} \ra \bf{s}' \ra \bf{s}'' \ra \cdots
|
|
$$
|
|
|
|
Currently, we set $\bf{s}' = \bf{s}$ and make the chain **circular**, so the bootstrapping keys are $E(\bf{s}, s _ i)$. $\bf{s}$ is being encrypted by itself. We wonder if this is secure, but there is no known proof for this. This is used as an assumption called the **circular security assumption**.
|
|
|
|
Designing an FHE scheme without the circular security assumption is currently an open problem.
|
|
|
|
## CKKS Scheme
|
|
|
|
The [BGV scheme](../2023-11-23-bgv-scheme/#the-bgv-scheme) operates on $\Z _ p$, so it doesn't work on real numbers. **Cheon-Kim-Kim-Song** (CKKS) scheme works on real numbers using approximate computation.
|
|
|
|
### Approximate Computation
|
|
|
|
Computers use floating point representations for real numbers.
|
|
|
|
$$
|
|
2.9979 \times 10^8
|
|
$$
|
|
|
|
Here, $2.9979$ is the **significand**, $10$ is the base and $8$ is the exponent. We also call $10^8$ the **scaling factor**.
|
|
|
|
Floating point operations involve **rounding**, but rounding is not easy in homomorphic encryption. Using the BGV scheme on $\Z _ p$, there are $2$ methods to do this.
|
|
|
|
- Bit-wise Encryption
|
|
- $32$-bit integer results in $32$ ciphertexts.
|
|
- Binary multiplier circuits can be used for multiplication.
|
|
- Rounding is easy if done this way.
|
|
- But this is *extremely* inefficient. Huge number of gates are required, consumes a lot of levels.
|
|
- Integer Encryption
|
|
- To encrypt the significant, use a modulus large enough, such as $p > 2^{32}$.
|
|
- For multiplication, use $p > 2^{64}$.
|
|
- But rounding is hard in $\Z _ p$.
|
|
|
|
So our wish is to design an HE scheme that natively supports rounding operation!
|
|
|
|
### CKKS Description
|
|
|
|
In the LWE problem, error was added for security. This can be exploited, since computing floating points allows some rounding errors.
|
|
|
|
> Let $n, q, \sigma$ be parameters for LWE and set a scaling factor $\Delta > 0$.
|
|
>
|
|
> **Key Generation**
|
|
> - A secret key is chosen as $\bf{s} = (s _ 1, \dots, s _ n) \in \braces{0, 1}^n$, with its linearization gadget.
|
|
>
|
|
> **Encryption**: message $m \in \R$.
|
|
> - Randomly sample $\bf{a} = (a _ 1, \dots, a _ n) \la \Z _ q^n$ and $e \la D _ \sigma$.
|
|
> - Compute $b = -\span{\bf{a}, \bf{s}} + \round{\Delta \cdot m} + e \pmod q$.
|
|
> - Output ciphertext $\bf{c} = (b, \bf{a}) \in \Z _ q^{n+1}$.
|
|
>
|
|
> **Decryption**
|
|
> - Compute $\mu = b + \span{\bf{a}, \bf{s}} \pmod q$.
|
|
> - Output $m' = \Delta\inv \cdot \mu \in \R$.
|
|
|
|
Note that the decrypted output is $m'$, which is **not equal to $m$**. We have
|
|
|
|
$$
|
|
\mu = \round{\Delta \cdot m} + e
|
|
$$
|
|
|
|
if $\mu$ is small. (ex. $\abs{\mu} < q/2$) But $m' = \Delta\inv \cdot \mu \neq m$. The traditional *correctness* does not apply here, since $D(\bf{s}, \bf{c}) \neq m$.
|
|
|
|
Instead, CKKS is an **approximate encryption**. The exact $m$ is not recovered, but we get an approximation $m'$ with bounded error,
|
|
|
|
$$
|
|
\abs{m - m'} \leq \frac{1}{\Delta} (0.5 + \abs{e}).
|
|
$$
|
|
|
|
This is okay, since small numerical errors are allowed in floating-point operations. Also, it can be seen from this inequality that $\Delta$ is sort of a *precision*.
|
|
|
|
Also, CKKS is secure under the LWE assumption.
|
|
|
|
## Operations on Ciphertexts in CKKS
|
|
|
|
The overall process is similar to that of BGV, with some additional changes.
|
|
|
|
Remember that if $\bf{c} = (b, \bf{a})$ is an encryption of $m \in \R$, then
|
|
|
|
$$
|
|
\mu = b + \span{\bf{a}, \bf{s}} \pmod q, \quad \mu \approx \Delta \cdot m.
|
|
$$
|
|
|
|
### Addition in CKKS
|
|
|
|
> Let $\bf{c} = (b, \bf{a})$ and $\bf{c}' = (b', \bf{a}')$ be encryptions of $m, m' \in \R$. Then, $\bf{c} _ \rm{add} = \bf{c} + \bf{c}'$ is an encryption of $m + m'$.
|
|
|
|
*Proof*. Decrypt $\bf{c} _ \rm{add} = (b + b', \bf{a} + \bf{a}')$.
|
|
|
|
$$
|
|
\mu _ \rm{add} = \mu + \mu' = (b + b') + \span{\bf{a} + \bf{a}', \bf{s}} \pmod q.
|
|
$$
|
|
|
|
If $\abs{\mu + \mu'} < q/2$, then
|
|
|
|
$$
|
|
\mu _ \rm{add} = \mu + \mu' = \Delta \cdot (m + m'),
|
|
$$
|
|
|
|
so the decryption results in $\Delta\inv \cdot (\mu + \mu') \approx m + m'$.
|
|
|
|
### Multiplication in CKKS
|
|
|
|
We also use [tensor products](../2023-11-23-bgv-scheme/#tensor-product), and their properties.
|
|
|
|
> Let $\bf{c} = (b, \bf{a})$ and $\bf{c}' = (b', \bf{a}')$ be encryptions of $m, m' \in \R$. Then,
|
|
>
|
|
> $$
|
|
> \bf{c} _ \rm{mul} = \bf{c} \otimes \bf{c}' = (bb', b\bf{a}' + b' \bf{a}, \bf{a} \otimes \bf{a}')
|
|
> $$
|
|
>
|
|
> is an encryption of $mm'$ with $(1, \bf{s}, \bf{s} \otimes \bf{s})$.
|
|
|
|
*Proof*. It can be checked that
|
|
|
|
$$
|
|
\begin{aligned}
|
|
\mu _ \rm{mul} &= \mu\mu' = (b + \span{\bf{a}, \bf{s}})(b' + \span{\bf{a}', \bf{s}}) \\
|
|
&= bb' + \span{b\bf{a}' + b' \bf{a}, \bf{s}} + \span{\bf{a} \otimes \bf{a}', \bf{s} \otimes \bf{s}'} \pmod q
|
|
\end{aligned}
|
|
$$
|
|
|
|
if $\abs{\mu\mu'} < q/2$. Then
|
|
|
|
$$
|
|
\mu _ \rm{mul} = \mu\mu' \approx (\Delta \cdot m) \cdot (\Delta \cdot m') = \Delta^2 \cdot mm'.
|
|
$$
|
|
|
|
So $mm' \approx \Delta^{-2} \cdot \mu _ \rm{mul}$.
|
|
|
|
We have issues with multiplication, as we did in BGV.
|
|
|
|
- The dimension of the ciphertext has increased to $n^2$.
|
|
- The scaling factor has increased to $\Delta^2$.
|
|
- A larger scaling factor means more significant digits to calculate.
|
|
|
|
### Dimension Reduction
|
|
|
|
The relinearization procedure is almost the same as in [BGV relinearization](../2023-11-23-bgv-scheme/#relinearization).
|
|
|
|
For convenience, let $a _ {i, j} = a _ i a _ j'$.
|
|
|
|
> **Relinearization Keys**: for $1 \leq i, j \leq n$ and $0 \leq k < \ceil{\log q}$, perform the following.
|
|
> - Sample $\bf{u} _ {i, j, k} \la \Z _ q^{n}$ and $e _ {i, j, k} \la D _ \sigma$.
|
|
> - Compute $v _ {i, j, k} = -\span{\bf{u} _ {i, j, k}, \bf{s}} + 2^k \cdot s _ i s _ j + e _ {i, j, k} \pmod q$.
|
|
> - Output $\bf{w} _ {i, j, k} = (v _ {i, j, k}, \bf{u} _ {i, j, k})$.
|
|
>
|
|
> **Linearization**: given $\bf{c} _ \rm{mul} = (bb', b\bf{a}' + b' \bf{a}, \bf{a} \otimes \bf{a}')$, $\bf{w} _ {i, j, k}$ for $1 \leq i, j \leq n$ and $0 \leq k < \ceil{\log q}$, output the following.
|
|
>
|
|
> $$
|
|
> \bf{c} _ \rm{mul}^\ast = (b _ \rm{mul}^\ast, \bf{a} _ \rm{mul}^\ast) = (bb', b\bf{a}' + b'\bf{a}) + \sum _ {i=1}^n \sum _ {j=1}^n \sum _ {k=0}^{\ceil{\log q}} a _ {i, j}[k] \bf{w} _ {i, j, k} \pmod q.
|
|
> $$
|
|
|
|
Correctness can be checked. The bounds for summations are omitted for brevity. They range from $1 \leq i, j \leq n$ and $0 \leq k < \ceil{\log q}$.
|
|
|
|
$$
|
|
\begin{aligned}
|
|
b _ \rm{mul}^\ast + \span{\bf{a} _ \rm{mul}^\ast, \bf{s}} &= bb' + \sum _ {i, j, k} a _ {i, j}[k] \cdot v _ {i, j, k} + \span{b\bf{a}' + b'\bf{a}, \bf{s}} + \sum _ {i, j, k} a _ {i, j}[k] \cdot \span{\bf{u} _ {i, j, k}, \bf{s}} \\
|
|
&= bb' + \span{b\bf{a}' + b'\bf{a}, \bf{s}} + \sum _ {i, j, k} a _ {i, j}[k] \cdot \paren{v _ {i, j, k} + \span{\bf{u} _ {i, j, k}, \bf{s}}} \\
|
|
&= bb' + \span{b\bf{a}' + b'\bf{a}, \bf{s}} + \sum _ {i, j, k} a _ {i, j}[k] \paren{2^k \cdot s _ is _ j + e _ {i, j, k}} \\
|
|
&= bb' + \span{b\bf{a}' + b'\bf{a}, \bf{s}} + \sum _ {i, j} a _ {i, j}s _ i s _ j + \sum _ {i, j, k} a _ {i, j}[k] \cdot e _ {i, j, k} \\
|
|
&= bb' + \span{b\bf{a}' + b'\bf{a}, \bf{s}} + \span{\bf{a} \otimes \bf{a}', \bf{s} \otimes \bf{s}} + e\conj \\
|
|
&= \mu _ \rm{mul} + e\conj\pmod q.
|
|
\end{aligned}
|
|
$$
|
|
|
|
Since
|
|
|
|
$$
|
|
e\conj = \sum _ {i, j, k} a _ {i, j}[k] \cdot e _ {i, j, k} \ll q,
|
|
$$
|
|
|
|
we have
|
|
|
|
$$
|
|
\mu _ \rm{mul}^\ast = \mu _ \rm{mul} + e\conj \approx \mu\mu' \approx \Delta^2 \cdot mm'.
|
|
$$
|
|
|
|
Note that the proof is identical to that of BGV linearization, except for missing constant factor $2$ in the error.
|
|
|
|
### Scaling Factor Reduction
|
|
|
|
In BGV, we used modulus switching for [noise reduction](../2023-11-23-bgv-scheme/#noise-reduction). It was for reducing the error and preserving the message. We also use modulus switching here, but for a different purpose. The message can have small numerical errors, we just want to reduce the scaling factor. This operation is called **rescaling**.
|
|
|
|
Given $\bf{c} = (b, \bf{a}) \in \Z _ q^{n+1}$ such that $b + \span{\bf{a}, \bf{s}} = \mu \pmod q$ and $\mu \approx \Delta^2 \cdot m$, we want to generate a new ciphertext of $m' \approx m$ that has a scaling factor reduced to $\Delta$. This can be done by dividing the ciphertext by $\Delta$ and then rounding it appropriately.
|
|
|
|
> **Modulus Switching**: let $\bf{c} = (b, \bf{a}) \in \Z _ q^{n+1}$ be given.
|
|
>
|
|
> - Let $q' = \Delta \inv \cdot q$.[^2]
|
|
> - Output $\bf{c}' = \round{\Delta\inv \cdot \bf{c}} \in \Z _ {q'}^{n+1}$.
|
|
|
|
Note that the modulus has been switched to $q'$. Constant multiplication and rounding is done component-wise on $\bf{c}$.
|
|
|
|
We check that $\bf{c}'$ has scaling factor $\Delta$. We know that $\mu' = b' + \span{\bf{a}', \bf{s}} \pmod{q'}$.
|
|
|
|
Let $k \in \Z$ such that $b + \span{\bf{a}, \bf{s}} = \mu + kq$. By the choice of $b'$ and $\bf{a}'$, we have
|
|
|
|
$$
|
|
b' = \Delta\inv \cdot b + \epsilon _ 0, \quad a _ i' = \Delta\inv \cdot a _ i + \epsilon _ i
|
|
$$
|
|
|
|
for some $\epsilon _ i$ such that $\abs{\epsilon _ i} \leq 0.5$. So we have
|
|
|
|
$$
|
|
\begin{aligned}
|
|
\mu' &= \Delta\inv \cdot \paren{b + \sum _ {i=1}^n a _ i s _ i} + \epsilon _ 0 + \sum _ {i=1}^n \epsilon _ i s _ i \\
|
|
&= \Delta\inv \cdot (\mu + kq) + \epsilon \approx \Delta \inv \cdot (\Delta^2 \cdot m) + kq' = \Delta \cdot m \pmod{q'},
|
|
\end{aligned}
|
|
$$
|
|
|
|
since $\epsilon = \epsilon _ 0 + \sum _ {i=1}^n \epsilon _ i s _ i$ is small.
|
|
|
|
### Modulus Chain
|
|
|
|
Using modulus switching, we can set $q _ L = \Delta^{L+1}$ where $L$ is the maximal level for multiplication. After each multiplication, the modulus is switched to $q _ {k-1} = q _ k / \Delta$.
|
|
|
|
Multiplication increases the scaling factor to $\Delta^2$, and then rescaling operation reduces the scaling factor back to $\Delta$.
|
|
|
|
So we have a modulus chain,
|
|
|
|
$$
|
|
\Delta^{L+1} \ra \Delta^L \ra \cdots \ra \Delta.
|
|
$$
|
|
|
|
When we reach $q _ 0 = \Delta$, we cannot perform any multiplications, so we apply [bootstrapping](../2023-12-08-bootstrapping-ckks/#bootstrapping) here.
|
|
|
|
### Multiplication in CKKS (Summary)
|
|
|
|
- Set up a modulus chain $q _ k = \Delta^{k+1}$ for $k = 0, \dots, L$.
|
|
- Given two ciphertexts $\bf{c} = (b, \bf{a}) \in \Z _ {q _ k}^{n+1}$ and $\bf{c}' = (b', \bf{a}') \in \Z _ {q _ k}^{n+1}$ with modulus $q _ k$ and **scaling factor** $\Delta$.
|
|
|
|
- (**Tensor Product**) $\bf{c} _ \rm{mul} = \bf{c} \otimes \bf{c}' \pmod{q _ k}$.
|
|
- Now we have $n^2$ dimensions and scaling factor $\Delta^2$.
|
|
- (**Relinearization**)
|
|
- Back to $n$ dimensions and scaling factor $\Delta^2$.
|
|
- (**Modulus Switching**; **Rescaling**)
|
|
- Modulus is switched to $q _ {k-1}$ and scaling factor is back to $\Delta$.
|
|
|
|
[^1]: The noise hasn't gone away since we didn't *fully evaluate* the decryption circuit, which takes the remainders from dividing by $q$ and $2$.
|
|
[^2]: No rounding...?
|