Files
blog/_posts/mathematics/measure-theory/2023-01-23-construction-of-measure.md
Sungchan Yi 23aeb29ad8 feat: breaking change (unstable) (#198)
* [PUBLISHER] upload files #175

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-19-symmetric-key-encryption.md

* [PUBLISHER] upload files #177

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-19-symmetric-key-encryptio.md

* [PUBLISHER] upload files #178

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md

* [PUBLISHER] upload files #179

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md

* [PUBLISHER] upload files #180

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md

* [PUBLISHER] upload files #181

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md

* [PUBLISHER] upload files #182

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* [PUBLISHER] upload files #183

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md

* [PUBLISHER] upload files #184

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md

* [PUBLISHER] upload files #185

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md

* [PUBLISHER] upload files #186

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* [PUBLISHER] upload files #187

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 14. Secure Multiparty Computation.md

* DELETE FILE : _posts/Lecture Notes/Modern Cryptography/2023-09-19-symmetric-key-encryption.md

* DELETE FILE : _posts/lecture-notes/modern-cryptography/2023-09-18-symmetric-key-cryptography-2.md

* [PUBLISHER] upload files #188

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH NOTE : 14. Secure Multiparty Computation.md

* DELETE FILE : _posts/Lecture Notes/Modern Cryptography/2023-09-19-symmetric-key-encryption.md

* chore: remove files

* [PUBLISHER] upload files #197

* PUSH NOTE : 수학 공부에 대한 고찰.md

* PUSH NOTE : 09. Lp Functions.md

* PUSH ATTACHMENT : mt-09.png

* PUSH NOTE : 08. Comparison with the Riemann Integral.md

* PUSH ATTACHMENT : mt-08.png

* PUSH NOTE : 04. Measurable Functions.md

* PUSH ATTACHMENT : mt-04.png

* PUSH NOTE : 06. Convergence Theorems.md

* PUSH ATTACHMENT : mt-06.png

* PUSH NOTE : 07. Dominated Convergence Theorem.md

* PUSH ATTACHMENT : mt-07.png

* PUSH NOTE : 05. Lebesgue Integration.md

* PUSH ATTACHMENT : mt-05.png

* PUSH NOTE : 03. Measure Spaces.md

* PUSH ATTACHMENT : mt-03.png

* PUSH NOTE : 02. Construction of Measure.md

* PUSH ATTACHMENT : mt-02.png

* PUSH NOTE : 01. Algebra of Sets and Set Functions.md

* PUSH ATTACHMENT : mt-01.png

* PUSH NOTE : Rules of Inference with Coq.md

* PUSH NOTE : 블로그 이주 이야기.md

* PUSH NOTE : Secure IAM on AWS with Multi-Account Strategy.md

* PUSH ATTACHMENT : separation-by-product.png

* PUSH NOTE : You and Your Research, Richard Hamming.md

* PUSH NOTE : 10. Digital Signatures.md

* PUSH ATTACHMENT : mc-10-dsig-security.png

* PUSH ATTACHMENT : mc-10-schnorr-identification.png

* PUSH NOTE : 9. Public Key Encryption.md

* PUSH ATTACHMENT : mc-09-ss-pke.png

* PUSH NOTE : 8. Number Theory.md

* PUSH NOTE : 7. Key Exchange.md

* PUSH ATTACHMENT : mc-07-dhke.png

* PUSH ATTACHMENT : mc-07-dhke-mitm.png

* PUSH ATTACHMENT : mc-07-merkle-puzzles.png

* PUSH NOTE : 6. Hash Functions.md

* PUSH ATTACHMENT : mc-06-merkle-damgard.png

* PUSH ATTACHMENT : mc-06-davies-meyer.png

* PUSH ATTACHMENT : mc-06-hmac.png

* PUSH NOTE : 5. CCA-Security and Authenticated Encryption.md

* PUSH ATTACHMENT : mc-05-ci.png

* PUSH ATTACHMENT : mc-05-etm-mte.png

* PUSH NOTE : 1. OTP, Stream Ciphers and PRGs.md

* PUSH ATTACHMENT : mc-01-prg-game.png

* PUSH ATTACHMENT : mc-01-ss.png

* PUSH NOTE : 4. Message Authentication Codes.md

* PUSH ATTACHMENT : mc-04-mac.png

* PUSH ATTACHMENT : mc-04-mac-security.png

* PUSH ATTACHMENT : mc-04-cbc-mac.png

* PUSH ATTACHMENT : mc-04-ecbc-mac.png

* PUSH NOTE : 3. Symmetric Key Encryption.md

* PUSH ATTACHMENT : is-03-ecb-encryption.png

* PUSH ATTACHMENT : is-03-cbc-encryption.png

* PUSH ATTACHMENT : is-03-ctr-encryption.png

* PUSH NOTE : 2. PRFs, PRPs and Block Ciphers.md

* PUSH ATTACHMENT : mc-02-block-cipher.png

* PUSH ATTACHMENT : mc-02-feistel-network.png

* PUSH ATTACHMENT : mc-02-des-round.png

* PUSH ATTACHMENT : mc-02-DES.png

* PUSH ATTACHMENT : mc-02-aes-128.png

* PUSH ATTACHMENT : mc-02-2des-mitm.png

* PUSH NOTE : 18. Bootstrapping & CKKS.md

* PUSH NOTE : 17. BGV Scheme.md

* PUSH NOTE : 16. The GMW Protocol.md

* PUSH ATTACHMENT : mc-16-beaver-triple.png

* PUSH NOTE : 15. Garbled Circuits.md

* PUSH NOTE : 14. Secure Multiparty Computation.md

* PUSH NOTE : 13. Sigma Protocols.md

* PUSH ATTACHMENT : mc-13-sigma-protocol.png

* PUSH ATTACHMENT : mc-13-okamoto.png

* PUSH ATTACHMENT : mc-13-chaum-pedersen.png

* PUSH ATTACHMENT : mc-13-gq-protocol.png

* PUSH NOTE : 12. Zero-Knowledge Proofs (Introduction).md

* PUSH ATTACHMENT : mc-12-id-protocol.png

* PUSH NOTE : 11. Advanced Topics.md

* PUSH NOTE : 0. Introduction.md

* PUSH NOTE : 02. Symmetric Key Cryptography (1).md

* PUSH NOTE : 09. Transport Layer Security.md

* PUSH ATTACHMENT : is-09-tls-handshake.png

* PUSH NOTE : 08. Public Key Infrastructure.md

* PUSH ATTACHMENT : is-08-certificate-validation.png

* PUSH NOTE : 07. Public Key Cryptography.md

* PUSH NOTE : 06. RSA and ElGamal Encryption.md

* PUSH NOTE : 05. Modular Arithmetic (2).md

* PUSH NOTE : 03. Symmetric Key Cryptography (2).md

* PUSH ATTACHMENT : is-03-feistel-function.png

* PUSH ATTACHMENT : is-03-cfb-encryption.png

* PUSH ATTACHMENT : is-03-ofb-encryption.png

* PUSH NOTE : 04. Modular Arithmetic (1).md

* PUSH NOTE : 01. Security Introduction.md

* PUSH ATTACHMENT : is-01-cryptosystem.png

* PUSH NOTE : Search Time in Hash Tables.md

* PUSH NOTE : 랜덤 PS일지 (1).md

* chore: rearrange articles

* feat: fix paths

* feat: fix all broken links

* feat: title font to palatino
2024-11-13 14:28:45 +09:00

268 lines
16 KiB
Markdown

---
share: true
toc: true
math: true
categories:
- Mathematics
- Measure Theory
path: _posts/mathematics/measure-theory
tags:
- math
- analysis
- measure-theory
title: 02. Construction of Measure
date: 2023-01-23
github_title: 2023-01-23-construction-of-measure
image:
path: /assets/img/posts/mathematics/measure-theory/mt-02.png
attachment:
folder: assets/img/posts/mathematics/measure-theory
---
![mt-02.png](../../../assets/img/posts/mathematics/measure-theory/mt-02.png)
이제 본격적으로 집합을 재보도록 하겠습니다. 우리가 잴 수 있는 집합들부터 시작합니다. $\mathbb{R}^p$에서 논의할 건데, 이제 여기서부터는 $\mathbb{R}$의 구간의 열림/닫힘을 모두 포괄하여 정의합니다. 즉, $\mathbb{R}$의 구간이라고 하면 $[a, b], (a, b), [a, b), (a, b]$ 네 가지 경우를 모두 포함합니다.
## Elementary Sets
**정의.** ($\mathbb{R}^p$의 구간) $a _ i, b _ i \in \mathbb{R}$, $a _ i \leq b _ i$ 라 하자. $I _ i$가 $\mathbb{R}$의 구간이라고 할 때, $\mathbb{R}^p$의 구간은
$$\prod _ {i=1}^p I _ i = I _ 1 \times \cdots \times I _ p$$
와 같이 정의한다.
예를 들어 $\mathbb{R}^2$의 구간이라 하면 직사각형 영역, $\mathbb{R}^3$의 구간이라 하면 직육면체 영역을 떠올릴 수 있습니다. 단, 경계는 포함되지 않을 수도 있습니다.
이러한 구간들을 유한개 모아 합집합하여 얻은 집합을 모아 elementary set이라 합니다.
**정의.** (Elementary Set) 어떤 집합이 유한개 구간의 합집합으로 표현되면 그 집합을 **elementary set**이라고 한다. 그리고 $\mathbb{R}^p$의 elementary set의 모임을 $\Sigma$로 표기한다.
임의의 구간은 유계입니다. 따라서 구간의 유한한 합집합도 유계일 것입니다.
**참고.** 임의의 elementary set은 유계이다.
Elementary set의 모임에서 집합의 연산을 정의할 수 있을 것입니다. 이 때, $\Sigma$가 ring이 된다는 것을 간단하게 확인할 수 있습니다.
**명제.** $\Sigma$는 ring이다. 하지만 전체 공간인 $\mathbb{R}^p$를 포함하고 있지 않기 때문에 $\sigma$-ring은 아니다.
구간의 길이를 재는 방법은 아주 잘 알고 있습니다. 유한개 구간의 합집합인 elementary set에서도 쉽게 잴 수 있습니다. 이제 길이 함수 $m: \Sigma \rightarrow[0, \infty)$ 을 정의하겠습니다. 아직 measure는 아닙니다.
**정의.** $a _ i, b _ i \in \mathbb{R}$ 가 구간 $I _ i$의 양 끝점이라 하자. $\mathbb{R}^p$의 구간 $I = \displaystyle\prod _ {i=1}^p I _ i$ 에 대하여,
$$m(I) = \prod _ {i=1}^p (b _ i - a _ i)$$
로 정의한다.
**정의.** $I _ i$가 쌍마다 서로소인 $\mathbb{R}^p$의 구간이라 하자. $A = \displaystyle\bigcup _ {i=1}^n I _ i$ 에 대하여
$$m(A) = \sum _ {i=1}^n m(I _ i)$$
로 정의한다.
$\mathbb{R}, \mathbb{R}^2, \mathbb{R}^3$에서 생각해보면 $m$은 곧 길이, 넓이, 부피와 대응되는 함수임을 알 수 있습니다. 또한 쌍마다 서로소인 구간의 합집합에 대해서는 각 구간의 함숫값을 더한 것으로 정의합니다. 어떤 집합을 겹치지 않게 구간으로 나눌 수 있다면, 집합의 ‘길이’가 각 구간의 ‘길이’ 합이 되는 것은 자연스럽습니다.
그리고 이 정의는 well-defined 입니다. $A \in \Sigma$ 에 대해서 서로소인 유한개 구간의 합집합으로 나타내는 방법이 유일하지 않아도, $m$ 값은 같습니다.
**참고.** $m$은 $\Sigma$ 위에서 additive이다. 따라서 $m : \Sigma \rightarrow[0, \infty)$ 은 additive set function이다.
여기서 추가로 regularity 조건을 만족했으면 좋겠습니다.
**정의.** (Regularity) Set function $\mu: \Sigma \rightarrow[0, \infty]$ 가 additive라 하자. 모든 $A \in \Sigma$ 와 $\epsilon > 0$ 에 대하여
> 닫힌집합 $F \in \Sigma$, 열린집합 $G \in \Sigma$ 가 존재하여 $F \subseteq A \subseteq G$ 이고 $\mu(G) - \epsilon \leq \mu(A) \leq \mu(F) + \epsilon$
이면 $\mu$가 $\Sigma$ 위에서 **regular**하다고 정의한다.
위에서 정의한 $m$이 regular한 것은 쉽게 확인할 수 있습니다.
이제 set function $\mu: \Sigma \rightarrow[0, \infty)$ 가 finite, regular, additive 하다고 가정합니다.
**정의.** (Outer Measure) $E \in \mathcal{P}(\mathbb{R}^p)$ 의 **outer measure** $\mu^\ast: \mathcal{P}(\mathbb{R}^p) \rightarrow[0, \infty]$ 는
$$\mu^\ast(E) = \inf \left\lbrace \sum _ {n=1}^\infty \mu(A _ n) : \text{열린집합 } A _ n \in \Sigma \text{ 에 대하여 } E \subseteq\bigcup _ {n=1}^\infty A _ n\right\rbrace.$$
로 정의한다.
Outer measure라 부르는 이유는 $E$의 바깥에서 길이를 재서 근사하기 때문입니다. Outer measure는 모든 power set에 대해서 정의할 수 있으니, 이를 이용해서 모든 집합을 잴 수 있으면 좋겠습니다. 하지만 measure가 되려면 countably additive 해야하는데, 이 조건이 가장 만족하기 까다로운 조건입니다. 실제로 countably additive 조건이 성립하지 않습니다.
**참고.**
- $\mu^\ast \geq 0$ 이다.
- $E _ 1 \subseteq E _ 2$ 이면 $\mu^\ast(E _ 1) \leq \mu^\ast(E _ 2)$ 이다. (단조성)
**정리.**
1. $A \in \Sigma$ 이면 $\mu^\ast(A) = \mu(A)$.[^1]
2. Countable subadditivity가 성립한다.
$$\mu^\ast\left( \bigcup _ {n=1}^\infty E _ n \right) \leq \sum _ {n=1}^\infty \mu^\ast(E _ n), \quad (\forall E _ n \in \mathcal{P}(\mathbb{R}^p))$$
**증명.**
(1) $A \in \Sigma$, $\epsilon > 0$ 라 두자. $\mu$의 regularity를 이용하면, 열린집합 $G \in \Sigma$ 가 존재하여 $A \subseteq G$ 이고
$$\mu^\ast(A) \leq \mu(G) \leq \mu(A) + \epsilon$$
이다. $\mu^\ast$의 정의에 의해 열린집합 $A _ n \in \Sigma$ 가 존재하여 $A \subseteq\displaystyle\bigcup _ {n=1}^\infty A _ n$ 이고
$$\sum _ {n=1}^\infty \mu(A _ n) \leq \mu^\ast(A) + \epsilon$$
이다. 마찬가지로 regularity에 의해 닫힌집합 $F \in \Sigma$ 가 존재하여 $F\subseteq A$ 이고 $\mu(A) \leq \mu(F) + \epsilon$ 이다. $F \subseteq\mathbb{R}^p$ 는 유계이고 닫힌집합이므로 compact set이고, finite open cover를 택할 수 있다. 즉, 적당한 $N \in \mathbb{N}$ 에 대하여 $F \subseteq\displaystyle\bigcup _ {i=1}^N A _ {i}$ 가 성립한다.
따라서
$$\mu(A) \leq \mu(F) + \epsilon \leq \sum _ {i=1}^N \mu(A _ i) \leq \sum _ {i=1}^n \mu(A _ i) + \epsilon \leq \mu^\ast(A) + 2\epsilon$$
이제 $\epsilon \rightarrow 0$ 로 두면 $\mu(A) = \mu^\ast(A)$ 를 얻는다.
\(2\) 부등식의 양변이 모두 $\infty$ 이면 증명할 것이 없으므로, 양변이 모두 유한하다고 가정하여 모든 $n\in \mathbb{N}$ 에 대해 $\mu^\ast(E _ n) < \infty$ 라 하자. $\epsilon > 0$ 로 두고, 각 $n \in \mathbb{N}$ 에 대하여 열린집합 $A _ {n, k} \in \Sigma$ 가 존재하여 $E _ n \subseteq\displaystyle\bigcup _ {k=1}^\infty A _ {n, k}$ 이고 $\displaystyle\sum _ {k=1}^\infty \mu(A _ {n,k}) \leq \mu^\ast(E _ n) + 2^{-n}\epsilon$ 이다.
$\mu^\ast$는 하한(infimum)으로 정의되었기 때문에,
$$\mu^\ast\left( \bigcup _ {n=1}^\infty E _ n \right) \leq \sum _ {n=1}^\infty \sum _ {k=1}^\infty \mu(A _ {n,k}) \leq \sum _ {n=1}^\infty \mu^\ast(E _ n) + \epsilon$$
가 성립하고, $\epsilon \rightarrow 0$ 로 두면 부등식이 성립함을 알 수 있다.
## $\mu$-measurable Sets
Countably additive 조건이 성립하는 집합들만 모아서 measure를 construct 하려고 합니다. 아래 내용은 이를 위한 사전 준비 작업입니다.
**표기법.** (대칭차집합) $A \mathop{\mathrm{\triangle}}B = (A\setminus B) \cup (B \setminus A)$.
**정의.**
- $d(A, B) = \mu^\ast(A \mathop{\mathrm{\triangle}}B)$ 로 정의한다.
- 집합열 $A _ n$에 대하여 $d(A _ n, A) \rightarrow 0$ 이면 $A _ n \rightarrow A$ 로 정의한다.
**참고.**
- $A, B, C \in \mathbb{R}^p$ 에 대하여 $d(A, B) \leq d(A, C) + d(C, B)$ 이다.
- $A _ 1, B _ 2, B _ 1, B _ 2 \in \mathbb{R}^p$ 일 때, 다음이 성립한다.
$$\left.\begin{array}{c}d(A _ 1 \cup A _ 2, B _ 1 \cup B _ 2) \\d(A _ 1 \cap A _ 2, B _ 1 \cap B _ 2) \\d(A _ 1 \setminus A _ 2, B _ 1 \setminus B _ 2)\end{array}\right\rbrace\leq d(A _ 1, B _ 1) + d(A _ 2, B _ 2).$$
**정의.** (Finitely $\mu$-measurable) 집합 $A _ n \in \Sigma$ 이 존재하여 $A _ n \rightarrow A$ 이면 $A$가 **finitely $\mu$-measurable**이라 한다. 그리고 finitely $\mu$-measurable한 집합의 모임을 $\mathfrak{M} _ F(\mu)$로 표기한다.
위 정의는 $\mu$라는 set function에 의해 $\mu^\ast (A _ n \mathop{\mathrm{\triangle}}A) \rightarrow 0$ 이 되는 elementary set $A _ n$이 존재한다는 의미입니다.
**정의.** ($\mu$-measurable) $A _ n \in \mathfrak{M} _ F(\mu)$ 에 대하여 $A = \displaystyle\bigcup _ {n=1}^\infty A _ n$ 이면 $A$가 **$\mu$-measurable**이라 한다. 그리고 $\mu$-measurable한 집합의 모임을 $\mathfrak{M}(\mu)$로 표기한다.
**참고.** $\mu^\ast(A) = d(A, \varnothing) \leq d(A, B) + \mu^\ast(B)$.
**명제.** $\mu^\ast(A)$ 또는 $\mu^\ast(B)$가 유한하면, 다음이 성립한다.
$$\lvert \mu^\ast(A) - \mu^\ast(B) \rvert \leq d(A, B).$$
**따름정리.** $A \in \mathfrak{M} _ F(\mu)$ 이면 $\mu^\ast(A) < \infty$ 이다.
**증명.** $A _ n \in \Sigma$ 가 존재하여 $A _ n \rightarrow A$ 이고, $N \in \mathbb{N}$ 존재하여
$$\mu^\ast(A) \leq d(A _ N, A) + \mu^\ast(A _ N) \leq 1 + \mu^\ast(A _ N) < \infty$$
이다.
**따름정리.** $A _ n \rightarrow A$ 이고 $A _ n, A \in \mathfrak{M} _ F(\mu)$ 이면 $\mu^\ast(A _ n)\rightarrow\mu^\ast(A) < \infty$ 이다.
**증명.** $\mu^\ast(A)$, $\mu^\ast(A _ n)$가 유한하므로, $n \rightarrow\infty$ 일 때 $\lvert \mu^\ast(A _ n) - \mu^\ast(A) \rvert \leq d(A _ n, A) \rightarrow 0$ 이다.
## Construction of Measure
준비가 끝났으니 measure를 construct 해보겠습니다! $\mathcal{P}(\mathbb{R}^p)$에서는 없지만 정의역을 $\mathfrak{M}(\mu)$ 조금 좁히면 measure가 된다는 뜻입니다.
**정리.** $\mathfrak{M}(\mu)$ $\sigma$-algebra 이고 $\mu^\ast$ $\mathfrak{M}(\mu)$ measure가 된다.
**증명.** $\mathfrak{M}(\mu)$ $\sigma$-algebra이고 $\mu^\ast$ $\mathfrak{M}(\mu)$에서 countably additive임을 보이면 충분하다.
**(Step 0)** *$\mathfrak{M} _ F(\mu)$는 ring이다.*
$A, B \in \mathfrak{M} _ F(\mu)$ 라 하자. 그러면 $A _ n, B _ n \in \Sigma$ 이 존재하여 $A _ n \rightarrow A$, $B _ n \rightarrow B$ 된다. 그러면
$$\left.\begin{array}{c}d(A _ n \cup B _ n, A \cup B) \\ d(A _ n \cap B _ n, A \cap B) \\ d(A _ n \setminus B _ n, A \setminus B)\end{array}\right\rbrace\leq d(A _ n, A) + d(B _ n, B) \rightarrow 0$$
이므로 $A _ n \cup B _ n \rightarrow A \cup B, A _ n \setminus B _ n \rightarrow A\setminus B$ 이기 때문에 $\mathfrak{M} _ F(\mu)$ ring이다.
**(Step 1)** *$\mu^\ast$는 $\mathfrak{M} _ F(\mu)$ 위에서 additive이다*.
$\Sigma$ 위에서는 $\mu = \mu^\ast$ 이므로, 따름정리에 의해
$$\begin{matrix} \mu(A _ n) \rightarrow\mu^\ast(A), & \mu(A _ n\cup B _ n) \rightarrow\mu^\ast(A\cup B), \\ \mu(B _ n) \rightarrow\mu^\ast(B), & \mu(A _ n\cap B _ n) \rightarrow\mu^\ast(A\cap B) \end{matrix}$$
성립함을 있다. 일반적으로 $\mu(A _ n) + \mu(B _ n) = \mu(A _ n \cup B _ n) + \mu(A _ n \cap B _ n)$ 이므로 여기서 $n \rightarrow\infty$ 두면
$$\mu^\ast(A) + \mu^\ast(B) = \mu^\ast(A\cup B) + \mu^\ast(A \cap B)$$
얻는다. $A \cap B = \varnothing$ 라는 조건이 추가되면 $\mu^\ast$ additive임을 있다.
**(Step 2)** *$\mathfrak{M} _ F(\mu) = \lbrace A \in \mathfrak{M}(\mu) : \mu^\ast(A) < \infty\rbrace$.*[^2]
**Claim**. 쌍마다 서로소인 $\mathfrak{M} _ F(\mu)$ 원소들을 잡아 이들의 합집합으로 $A \in \mathfrak{M}(\mu)$ 표현할 있다.
**증명.** $A _ n' \in \mathfrak{M} _ F(\mu)$ 대하여 $A = \bigcup A _ n'$ 두자.
> $A _ 1 = A _ 1'$, $n \geq 2$ 이면 $A _ n = A _ n' \setminus(A _ 1'\cup \cdots \cup A _ {n-1}')$
같이 정의하면 $A _ n$이 쌍마다 서로소이고 $A _ n \in \mathfrak{M} _ F(\mu)$ 임을 있다.
사실을 이용하여 $A _ n \in \mathfrak{M} _ F(\mu)$ 대하여 $A = \displaystyle\bigcup _ {n=1}^\infty A _ n$ 으로 두자.
1. Countable subadditivity에 의해 $\displaystyle\mu^\ast(A) \leq \sum _ {n=1}^{\infty} \mu^\ast (A _ n)$ 성립한다.
2. Step 1에 의해 $\displaystyle\bigcup _ {n=1}^k A _ n \subseteq A$, $\displaystyle\sum _ {n=1}^{k} \mu^\ast(A _ n) \leq \mu^\ast(A)$ 이다. $k \rightarrow\infty$ 두면 $\displaystyle\mu^\ast(A) \geq \sum _ {n=1}^\infty \mu^\ast(A _ n)$ 임을 있다.
따라서 $\displaystyle\mu^\ast(A) = \sum _ {n=1}^\infty \mu^\ast(A _ n)$ 이다.[^3] [^4]
이제 $B _ n =\displaystyle\bigcup _ {k=1}^n A _ k$ 로 두자. $\mu^\ast(A) < \infty$ 를 가정하면 $\displaystyle\sum _ {n=1}^\infty \mu^\ast(A _ n)$ 수렴성에 의해
$$\displaystyle d(A, B _ n) = \mu^\ast\left( \bigcup _ {k=n+1}^\infty A _ k \right) = \sum _ {k=n+1}^{\infty} \mu^\ast(A _ i) \rightarrow 0 \text{ as } n \rightarrow\infty$$
임을 있다.
$B _ n \in \mathfrak{M} _ F(\mu)$ 이므로 $C _ n \in \Sigma$ 를 잡아 각 $n \in \mathbb{N}$ 에 대하여 $d(B _ n, C _ n)$를 임의로 작게 만들 수 있다. 그러면 $d(A, C _ n) \leq d(A, B _ n) + d(B _ n, C _ n)$ 이므로 충분히 큰 $n$에 대하여 $d(A, C _ n)$ 임의로 작게 만들 있다. 따라서 $C _ n \rightarrow A$ 임을 알 수 있고 $A \in \mathfrak{M} _ F(\mu)$ 라는 결론을 내릴 있다.
**(Step 3)** *$\mu^\ast$는 $\mathfrak{M}(\mu)$ 위에서 countably additive이다.*
$A _ n \in \mathfrak{M}(\mu)$ 가 $A \in \mathfrak{M}(\mu)$ 의 분할이라 하자. 적당한 $m \in \mathbb{N}$ 에 대하여 $\mu^\ast(A _ m) = \infty$ 이면
$$\mu^\ast\left( \bigcup _ {n=1}^\infty A _ n \right) \geq \mu^\ast(A _ m) = \infty = \sum _ {n=1}^\infty \mu^\ast(A _ n)$$
이므로 countable additivity가 성립한다.
이제 모든 $n\in \mathbb{N}$ 대하여 $\mu^\ast(A _ n) < \infty$ 이면, Step 2에 의해 $A _ n \in \mathfrak{M} _ F(\mu)$ 이고
$$\mu^\ast(A) = \mu^\ast\left( \bigcup _ {n=1}^\infty A _ n \right) = \sum _ {n=1}^\infty \mu^\ast(A _ n)$$
성립한다.
**(Step 4)** *$\mathfrak{M}(\mu)$는 $\sigma$-ring이다.*
$A _ n \in \mathfrak{M}(\mu)$ 이면 $B _ {n, k} \in \mathfrak{M} _ F(\mu)$ 가 존재하여 $\displaystyle A _ n = \bigcup _ k B _ {n,k}$ 이다. 그러면
$$\bigcup _ n A _ n = \bigcup _ {n, k} B _ {n, k} \in \mathfrak{M}(\mu)$$
이다.
$A, B \in \mathfrak{M}(\mu)$ 하면 $A _ n, B _ n \in \mathfrak{M} _ F(\mu)$ 에 대해 $\displaystyle A = \bigcup A _ n$, $\displaystyle B = \bigcup B _ n$ 이므로,
$$A \setminus B = \bigcup _ {n=1}^\infty \left( A _ n \setminus B \right) = \bigcup _ {n=1}^\infty (A _ n\setminus(A _ n\cap B))$$
임을 있다. 그러므로 $A _ n \cap B \in \mathfrak{M} _ F(\mu)$ 것만 보이면 충분하다. 정의에 의해
$$A _ n \cap B = \bigcup _ {k=1}^\infty (A _ n \cap B _ k) \in \mathfrak{M}(\mu)$$
이고 $\mu^\ast(A _ n \cap B) \leq \mu^\ast(A _ n) < \infty$ 이므로 $A _ n\cap B \in \mathfrak{M} _ F(\mu)$ 이다. 따라서 $A \setminus B$ $\mathfrak{M} _ F(\mu)$ 원소들의 countable 합집합으로 표현되므로 $A\setminus B \in \mathfrak{M}(\mu)$ 이다.
따라서 $\mathfrak{M}(\mu)$ $\sigma$-ring이고 $\sigma$-algebra이다.
---
이제 $\Sigma$ 위의 $\mu$ 정의를 $\mathfrak{M}(\mu)$ ($\sigma$-algebra) 확장하여 $\mathfrak{M}(\mu)$ 위에서는 $\mu = \mu^\ast$ 정의합니다. $\Sigma$ 위에서 $\mu = m$ , 이와 같이 확장한 $\mathfrak{M}(m)$ 위의 $m$ **Lebesgue measure** on $\mathbb{R}^p$ 합니다. 그리고 $A \in \mathfrak{M}(m)$ Lebesgue measurable set이라 합니다.
[^1]: $A$ open이 아니면 자명하지 않은 명제입니다.
[^2]: $A$ $\mu$-measurable인데 $\mu^\ast(A) < \infty$이면 $A$ finitely $\mu$-measurable이다.
[^3]: $A$ countable union of sets in $\mathfrak{M} _ F(\mu)$이므로 $\mu^\ast$ set의 $\mu^\ast$ 합이 된다.
[^4]: 아직 증명이 끝나지 않았습니다. $A _ n$은 $\mathfrak{M}(\mu)$의 원소가 아니라 $\mathfrak{M} _ F(\mu)$ 원소입니다.