Files
blog/_posts/Mathematics/Measure Theory/2023-07-31-Lp-functions.md
Sungchan Yi e5f865ff0c feat: Measure Theory 09 - L^p spaces (#61)
* [PUBLISHER] upload files #58

* PUSH NOTE : 09. Lp Functions.md

* PUSH ATTACHMENT : mt-09.png

* [PUBLISHER] upload files #59

* PUSH NOTE : 09. Lp Functions.md

* PUSH ATTACHMENT : mt-09.png

* [PUBLISHER] upload files #60

* PUSH NOTE : 09. Lp Functions.md

* PUSH ATTACHMENT : mt-09.png
2023-08-01 23:24:07 +09:00

210 lines
14 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
share: true
toc: true
math: true
categories: [Mathematics, Measure Theory]
tags: [math, analysis, measure-theory]
title: "09. $\\mathcal{L}^p$ Functions"
date: "2023-07-31"
github_title: "2023-07-31-Lp-functions"
image:
path: /assets/img/posts/mt-09.png
---
![mt-09.png](../../../assets/img/posts/mt-09.png){: .w-50}
## Integration on Complex Valued Function
Let $(X, \mathscr{F}, \mu)$ be a measure space, and $E \in \mathscr{F}$.
**정의.**
1. A complex valued function $f = u + iv$, (where $u, v$ are real functions) is measurable if $u$ and $v$ are both measurable.
2. For a complex function $f$,
$$f \in \mathcal{L}^{1}(E, \mu) \iff \int_E \left\lvert f \right\rvert \,d{\mu} < \infty \iff u, v \in \mathcal{L}^{1}(E, \mu).$$
3. If $f = u + iv \in \mathcal{L}^{1}(E, \mu)$, we define
$$\int_E f \,d{\mu} = \int_E u \,d{\mu} + i\int_E v \,d{\mu}.$$
**참고.**
1. Linearity also holds for complex valued functions. For $f_1, f_2 \in \mathcal{L}^{1}(\mu)$ and $\alpha \in \mathbb{C}$,
$$\int_E \left( f_1 + \alpha f_2 \right) \,d{\mu} = \int_E f_1 \,d{\mu} + \alpha \int_E f_2 \,d{\mu}.$$
2. Choose $c \in \mathbb{C}$ and $\left\lvert c \right\rvert = 1$ such that $\displaystyle c \int_E f \,d{\mu} \geq 0$. This is possible since multiplying by $c$ is equivalent to a rotation.
Now set $cf = u + vi$ where $u, v$ are real functions and the integral of $v$ over $E$ is $0$. Then,
$$\begin{aligned} \left\lvert \int_E f \,d{\mu} \right\rvert & = c \int_E f\,d{\mu} = \int_E u \,d{\mu} \\ & \leq \int_E (u^2+v^2)^{1/2} \,d{\mu} \\ & = \int_E \left\lvert cf \right\rvert \,d{\mu} = \int_E \left\lvert f \right\rvert \,d{\mu}. \end{aligned}$$
## Functions of Class $\mathcal{L}^{p}$
### $\mathcal{L}^p$ Space
Assume that $(X, \mathscr{F}, \mu)$ is given and $X = E$.
**정의.** ($\mathcal{L}^{p}$) A complex function $f$ is in $\mathcal{L}^{p}(\mu)$ if $f$ is measurable and $\displaystyle\int_E \left\lvert f \right\rvert ^p \,d{\mu} < \infty$.
**정의.** ($\mathcal{L}^{p}$-norm) **$\mathcal{L}^{p}$-norm** of $f$ is defined as
$$\left\lVert f \right\rVert_p = \left[\int_E \left\lvert f \right\rvert ^p \,d{\mu} \right]^{1/p}.$$
### Inequalities
**정리.** (Young Inequality) For $a, b \geq 0$, if $p > 1$ and $1/p + 1/q = 1$, then
$$ab \leq \frac{a^p}{p} + \frac{b^q}{q}.$$
**증명.** From $1/p + 1/q = 1$, $p - 1 = \frac{1}{q - 1}$. The graph $y = x^{p - 1}$ is equal to the graph of $x = y^{q - 1}$. Sketch the graph on the $xy$-plane and consider the area bounded by $x = 0$, $x = a$, $y = 0$, $y = b$. Then we directly see that
$$\int_0^a x^{p-1} \,d{x} + \int_0^b y^{q-1} \,d{y} \geq ab,$$
with equality when $a^p = b^q$. Evaluating the integral gives the desired inequality.
**참고.** For $\mathscr{F}$-measurable $f, g$ on $X$,
$$\left\lvert fg \right\rvert \leq \frac{\left\lvert f \right\rvert ^p}{p} + \frac{\left\lvert g \right\rvert ^q}{q} \implies \left\lVert fg \right\rVert_1 \leq \frac{\left\lVert f \right\rVert_p^p}{p} + \frac{\left\lVert g \right\rVert_q^q}{q}$$
by Young inequality. In particular, if $\left\lVert f \right\rVert_p = \left\lVert g \right\rVert_q = 1$, then $\left\lVert fg \right\rVert_1 \leq 1$.
**정리.** (Hölder Inequality) Let $1 < p < \infty$ and $\displaystyle\frac{1}{p} + \frac{1}{q} = 1$. If $f, g$ are measurable,
$$\left\lVert fg \right\rVert_1 \leq \left\lVert f \right\rVert_p \left\lVert g \right\rVert_q.$$
So if $f \in \mathcal{L}^{p}(\mu)$ and $g \in \mathcal{L}^{q}(\mu)$, then $fg \in \mathcal{L}^{1}(\mu)$.
**증명.** If $\left\lVert f \right\rVert_p = 0$ or $\left\lVert g \right\rVert_q = 0$ then $f = 0$ a.e. or $g = 0$ a.e. So $fg = 0$ a.e. and $\left\lVert fg \right\rVert_1 = 0$.
Now suppose that $\left\lVert f \right\rVert_p > 0$ and $\left\lVert g \right\rVert_q > 0$. By the remark above, the result directly follows from
$$\left\lVert \frac{f}{\left\lVert f \right\rVert_p} \cdot \frac{g}{\left\lVert g \right\rVert_q} \right\rVert_1 \leq 1.$$
**정리.** (Minkowski Inequality) For $1 \leq p < \infty$, if $f, g$ are measurable, then
$$\left\lVert f + g \right\rVert_p \leq \left\lVert f \right\rVert_p + \left\lVert g \right\rVert_p.$$
**증명.** If $f, g \notin \mathcal{L}^{p}$, the right hand side is $\infty$ and we are done. For $p = 1$, the equality is equivalent to the triangle inequality. Also if $\left\lVert f + g \right\rVert_p = 0$, the inequality holds trivially. We suppose that $p > 1$, $f, g \in \mathcal{L}^p$ and $\left\lVert f+g \right\rVert_p > 0$.
Let $q = \frac{p}{p-1}$. Since
$$\begin{aligned} \left\lvert f + g \right\rvert ^p & = \left\lvert f + g \right\rvert \cdot \left\lvert f + g \right\rvert ^{p - 1} \\ & \leq \bigl(\left\lvert f \right\rvert + \left\lvert g \right\rvert \bigr) \left\lvert f + g \right\rvert ^{p-1}, \end{aligned}$$
we have
$$\begin{aligned} \int \left\lvert f+g \right\rvert ^p & \leq \int \left\lvert f \right\rvert \cdot \left\lvert f+g \right\rvert ^{p-1} + \int \left\lvert g \right\rvert \cdot \left\lvert f+g \right\rvert ^{p-1} \\ & \leq \left( \int \left\lvert f \right\rvert ^p \right)^{1/p}\left( \int \left\lvert f+g \right\rvert ^{(p-1)q} \right)^{1/q} \\ & \quad + \left( \int \left\lvert q \right\rvert ^p \right)^{1/p}\left( \int \left\lvert f+g \right\rvert ^{(p-1)q} \right)^{1/q} \\ & = \left( \left\lVert f \right\rVert_p + \left\lVert g \right\rVert_p \right) \left( \int \left\lvert f+g \right\rvert ^p \right)^{1/q}. \end{aligned}$$
Since $\left\lVert f + g \right\rVert_p^p > 0$, we have
$$\begin{aligned} \left\lVert f + g \right\rVert_p & = \left( \int \left\lvert f+g \right\rvert ^p \right)^{1/p} \\ & = \left( \int \left\lvert f+g \right\rvert ^p \right)^{1 - \frac{1}{q}} \\ & \leq \left\lVert f \right\rVert_p + \left\lVert g \right\rVert_p. \end{aligned}$$
**정의.** $f \sim g \iff f = g$ $\mu$-a.e. and define
$$[f] = \left\lbrace g : f \sim g\right\rbrace.$$
We treat $[f]$ as an element in $\mathcal{L}^{p}(X, \mu)$, and write $f = [f]$.
**참고.**
1. We write $\left\lVert f \right\rVert_p = 0 \iff f = [0] = 0$ in the sense that $f = 0$ $\mu$-a.e.
2. Now $\lVert \cdot \rVert_p$ is a **norm** in $\mathcal{L}^{p}(X, \mu)$ so $d(f, g) = \left\lVert f - g \right\rVert_p$ is a **metric** in $\mathcal{L}^{p}(X, \mu)$.
## Completeness of $\mathcal{L}^p$
Now we have a *function space*, so we are interested in its *completeness*.
**정의.** (Convergence in $\mathcal{L}^p$) Let $f, f_n \in \mathcal{L}^{p}(\mu)$.
1. $f_n \rightarrow f$ in $\mathcal{L}^p(\mu) \iff \left\lVert f_n-f \right\rVert_p \rightarrow 0$ as $n \rightarrow\infty$.
2. $\left( f_n \right)_{n=1}^\infty$ is a Cauchy sequence in $\mathcal{L}^{p}(\mu)$ if and only if
> $\forall \epsilon > 0$, $\exists\,N > 0$ such that $n, m \geq N \implies \left\lVert f_n-f_m \right\rVert_p < \epsilon$.
**도움정리.** Let $\left( g_n \right)$ be a sequence of measurable functions. Then,
$$\left\lVert \sum_{n=1}^{\infty} \left\lvert g_n \right\rvert \right\rVert_p \leq \sum_{n=1}^{\infty} \left\lVert g_n \right\rVert_p.$$
Thus, if $\displaystyle\sum_{n=1}^{\infty} \left\lVert g_n \right\rVert_p < \infty$, then $\displaystyle\sum_{n=1}^{\infty} \left\lvert g_n \right\rvert < \infty$ $\mu$-a.e. So $\displaystyle\sum_{n=1}^{\infty} g_n < \infty$ $\mu$-a.e.
**증명.** By monotone convergence theorem and Minkowski inequality,
$$\begin{aligned} \left\lVert \sum_{n=1}^{\infty} \left\lvert g_n \right\rvert \right\rVert_p & = \lim_{m \rightarrow\infty} \left\lVert \sum_{n=1}^{m} \left\lvert g_n \right\rvert \right\rVert_p \\ & \leq \lim_{n \rightarrow\infty} \sum_{n=1}^{m} \left\lVert g_n \right\rVert_p \\ & = \sum_{n=1}^{\infty} \left\lVert g_n \right\rVert_p < \infty. \end{aligned}$$
Thus $\displaystyle\sum_{n=1}^{\infty} \left\lvert g_n \right\rvert < \infty$ $\mu$-a.e. and $\displaystyle\sum_{n=1}^{\infty} g_n < \infty$ $\mu$-a.e. by absolute convergence.
**정리.** (Fischer) Suppose $\left( f_n \right)$ is a Cauchy sequence in $\mathcal{L}^{p}(\mu)$. Then there exists $f \in \mathcal{L}^{p}(\mu)$ such that $f_n \rightarrow f$ in $\mathcal{L}^{p}(\mu)$.
**증명.** We construct $\left( n_k \right)$ by the following procedure.
$\exists\,n_1 \in \mathbb{N}$ such that $\left\lVert f_m - f_{n_1} \right\rVert_p < \frac{1}{2}$ for all $m \geq n_1$.
$\exists\,n_2 \in \mathbb{N}$ such that $\left\lVert f_m - f_{n_2} \right\rVert_p < \frac{1}{2^2}$ for all $m \geq n_2$.
Then, $\exists\,1 \leq n_1 < n_2 < \cdots < n_k$ such that $\left\lVert f_m - f_{n_k} \right\rVert_p < \frac{1}{2^k}$ for $m \geq n_k$.
Since $\displaystyle\left\lVert f_{n_{k+1}} - f_{n_k} \right\rVert_p < \frac{1}{2^k}$, we have
$$\sum_{k=1}^{\infty} \left\lVert f_{n_{k+1}} - f_{n_k} \right\rVert_p < \infty.$$
By the above lemma, $\sum \left\lvert f_{n_{k+1}} - f_{n_k} \right\rvert$ and $\sum (f_{n_{k+1}} - f_{n_k})$ are finite. Let $f_{n_0} \equiv 0$. Then as $m \rightarrow\infty$,
$$f_{n_{m+1}} = \sum_{k=0}^{m} \left( f_{n_{k+1}} - f_{n_k} \right)$$
converges $\mu$-a.e. Take $N \in \mathscr{F}$ with $\mu(N) = 0$ such that $f_{n_k}$ converges on $X \setminus N$. Let
$$f(x) = \begin{cases} \displaystyle\lim_{k \rightarrow\infty} f_{n_k} (x) & (x \in X \setminus N) \\ 0 & (x\in N) \end{cases}$$
then $f$ is measurable. Using the convergence,
$$\begin{aligned} \left\lVert f - f_{n_m} \right\rVert_p & = \left\lVert \sum_{k=m}^{\infty} \left( f_{n_{k+1}} (x) - f_{n_k}(x) \right) \right\rVert_p \\ & \leq \left\lVert \sum_{k=m}^{\infty} \left\lvert f_{n_{k+1}} (x) - f_{n_k}(x) \right\rvert \right\rVert_p \\ & \leq \sum_{k=m}^{\infty} \left\lVert f_{n_{k+1}} - f_{n_k} \right\rVert_p \leq 2^{-m} \end{aligned}$$
by the choice of $f_{n_k}$. So $f_{n_k} \rightarrow f$ in $\mathcal{L}^{p}(\mu)$. Also, $f = (f - f_{n_k}) + f_{n_k} \in \mathcal{L}^{p}(\mu)$.
Let $\epsilon > 0$ be given. Since $\left( f_n \right)$ is a Cauchy sequence in $\mathcal{L}^{p}$, $\exists\,N \in \mathbb{N}$ such that for all $n, m \geq N$, $\left\lVert f_n - f_m \right\rVert < \frac{\epsilon}{2}$. Note that $n_k \geq k$, so $n_k \geq N$ if $k \geq N$. Choose $N_1 \geq N$ such that for $k \geq N$, $\left\lVert f - f_{n_k} \right\rVert_p < \frac{\epsilon}{2}$. Then for all $k \geq N_1$,
$$\left\lVert f - f_k \right\rVert_p \leq \left\lVert f - f_{n_k} \right\rVert_p + \left\lVert f_{n_k} - f_k \right\rVert_p < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$
**참고.** $\mathcal{L}^{p}$ is a complete normed vector space, also known as **Banach space**.
**정리.** $C[a, b]$ is a dense subset of $\mathcal{L}^{p}[a, b]$. That is, for every $f \in \mathcal{L}^{p}[a, b]$ and $\epsilon > 0$, $\exists\,g \in C[a, b]$ such that $\left\lVert f - g \right\rVert_p < \epsilon$.
**증명.** Let $A$ be a closed subset in $[a, b]$, and consider a distance function
$$d(x, A) = \inf_{y\in A} \left\lvert x - y \right\rvert , \quad x \in [a, b].$$
Since $d(x, A) \leq \left\lvert x - z \right\rvert \leq \left\lvert x - y \right\rvert + \left\lvert y - z \right\rvert$ for all $z \in A$, taking infimum over $z \in A$ gives $d(x, A) \leq \left\lvert x - y \right\rvert + d(y, A)$. So
$$\left\lvert d(x, A) - d(y, A) \right\rvert \leq \left\lvert x - y \right\rvert ,$$
and $d(x, A)$ is continuous. If $d(x, A) = 0$, $\exists\,x_n \in A$ such that $\left\lvert x_n - x \right\rvert \rightarrow d(x, A) = 0$. Since $A$ is closed, $x \in A$. We know that $x \in A \iff d(x, A) = 0$.
Let
$$g_n(x) = \frac{1}{1 + n d(x, A)}.$$
$g_n$ is continuous, $g_n(x) = 1$ if and only if $x \in A$. Also for all $x \in [a, b] \setminus A$, $g_n(x) \rightarrow 0$ as $n \rightarrow\infty$. By Lebesgues dominated convergence theorem,
$$\begin{aligned} \left\lVert g_n - \chi_A \right\rVert_p^p & = \int_A \left\lvert g_n - \chi_A \right\rvert ^p \,d{x} + \int_{[a, b]\setminus A} \left\lvert g_n - \chi_A \right\rvert ^p \,d{x} \\ & = 0 + \int_{[a, b]\setminus A} \left\lvert g_n \right\rvert ^p \,d{x} \rightarrow 0 \end{aligned}$$
since $\left\lvert g_n \right\rvert ^p \leq 1$. We have shown that characteristic functions of closed sets can be approximated by continuous functions in $\mathcal{L}^{p}[a, b]$.
For every $A \in \mathfrak{M}(m)$, $\exists\,F_\text{closed} \subseteq A$ such that $m(A \setminus F) < \epsilon$. Since $\chi_A - \chi_F = \chi_{A \setminus F}$,
$$\begin{aligned} \int \left\lvert \chi_A-\chi_F \right\rvert ^p \,d{x} & = \int \left\lvert \chi_{A\setminus F} \right\rvert ^p \,d{x} \\ & = \int_{A\setminus F} \,d{x} = m(A \setminus F) < \epsilon. \end{aligned}$$
Therefore, for every $A \in \mathfrak{M}$, $\exists\,g_n \in C[a, b]$ such that $\left\lVert g_n - \chi_A \right\rVert_p \rightarrow 0$ as $n \rightarrow\infty$. So characteristic functions of any measurable set can be approximated by continuous functions in $\mathcal{L}^{p}[a, b]$.
Next, for any measurable simple function $f = \sum_{k=1}^{m}a_k \chi_{A_k}$, we can find $g_n^k \in C[a, b]$ so that
$$\left\lVert f - \sum_{k=1}^{m} a_k g_n^k \right\rVert_p = \left\lVert \sum_{k=1}^{m}a_k \left( \chi_{A_k} - g_n^k \right) \right\rVert_p \rightarrow 0.$$
Next for $f \in \mathcal{L}^{p}$ and $f \geq 0$, there exist simple functions $f_n \geq 0$ such that $f_n \nearrow f$ in $\mathcal{L}^{p}$. Finally, any $f \in \mathcal{L}^{p}$ can be written as $f = f^+ - f^-$, which completes the proof.
이러한 확장을 해보면 굉장히 routine합니다. $\chi_F$ for closed $F$ $\rightarrow$ $\chi_A$ for measurable $A$ $\rightarrow$ measurable simple $f$ $\rightarrow$ $0\leq f \in \mathcal{L}^{p} \rightarrow$ $f \in \mathcal{L}^{p}$ 같은 순서로 확장합니다.